SOLDER

REPORT

Hydrogeological Assessment

Proposed Redevelopment of 895 Lawrence Avenue East, North York, Ontario

Submitted to:

First Capital Asset Management (FCAM) LP

85 Hanna Avenue, Suite 400 Toronto, ON M6K 3S3

Attn: Ms. Julie Barnard Development Manager

Submitted by:

Golder Associates Ltd.

351 Steelcase Road West, Units 9-12, Markham, ON L3R 4H9 Canada

+1 905 475 5591

19129918

July 13, 2022

Distribution List

eCopy - First Capital Asset Management (FCAM) LP

eCopy - Golder Associates Ltd.

Table of Contents

1.0	INTR	ODUCTION	4
	1.1	Site and Project Description	4
	1.1.1	Topography and Drainage	4
	1.1.2	Geology and Physiography	4
	1.1.3	Groundwater Use	5
	1.2	Scope of Work	5
2.0	INVE	STIGATION PROCEDURE	6
	2.1	Drilling and Well Installations	6
	2.2	Soil Conditions	6
	2.3	Groundwater Level Measurements	7
	2.4	Hydraulic Conductivity	7
	2.5	Groundwater Quality	7
3.0	DEW	ATERING EVALUATION	7
	3.1	Drawdown Estimate	8
	3.2	Water Taking Needs	8
	3.3	Construction Dewatering Rates	8
	3.4	Long-Term Drainage	9
4.0	ASSE	SSMENT OF POTENTIAL DEWATERING EFFECTS	9
	4.1	Geotechnical Assessment	9
	4.2	Groundwater Resources	10
	4.3	Surface Water Resources	10
5.0	CLOS	SURE	10
REF	EREN	CES	11

TABLES

Table 1: Site Geology	.6
-----------------------	----

APPENDICES

APPENDIX A Important Information and Limitations

APPENDIX B Water Well Database Records

APPENDIX C Borehole Logs

APPENDIX D K-Tests

APPENDIX E Laboratory Data

1.0 INTRODUCTION

Golder Associates Ltd., a Member of WSP, ("Golder") has been retained by First Capital Asset Management LP ("FCAM" or "Client") to provide geotechnical and hydrogeological consulting services in support of the design for the proposed commercial and residential development (the "project") to be located southwest of the intersection of Lawrence Avenue East and The Donway West (the "Site") in Toronto, Ontario, at the location shown on Figure 1. The terms of reference for the consulting services are included in Golder's proposal No. P19129915 dated October 4, 2019. Authorization to proceed with the investigation was obtained in the form of the signed proposal received on February 25, 2020 from FCAM.

This report provides the results of the geotechnical exploration and testing and should be read in conjunction with the *"Important Information and Limitations of This Report"* in Appendix A which forms an integral part of this document. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within eighteen months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

1.1 Site and Project Description

The Site is located at 895 Lawrence Avenue East, North York, Ontario (M3C 3L2), at the southwest corner of the intersection of Lawrence Avenue East and The Donway West in Toronto, Ontario, as shown on Figure 2. The site is bordered on the north by Lawrence Avenue East, on the east and south by The Donway West and on the west by four-storey and one-storey commercial buildings. The Site is currently occupied by a one-storey commercial building in the northwest portion of the Site and a paved parking area and access roads in the remainder of the Site. Based on the topographic survey of the Site, the ground surface generally slopes downward from the west to the east with geodetic elevations ranging from approximately 146 metres (m) to 143 m. Along the western boundary of the Site, a retaining wall about 1 m to 1.5 m high separates the property from the neighbouring property, which is at a higher elevation.

At the time of preparing this report, the conceptual drawings provided by FCAM indicated that the proposed development consist of two towers (22 and 17 storeys) connected by a 6-storey podium. The towers will be for residential use and the podium will be mixed-use commercial and residential. All of the buildings will have a common underground parking structure extending to two levels below grade, which will be approximately 6 m below finished grade.

1.1.1 Topography and Drainage

The ground surface at the Site is relatively flat, with ground surface elevations ranging from approximately 143 metres above sea level (masl) in the east to 146 masl in the west. It is assumed that surface water (i.e., rainfall) at the Site discharges to the municipal sewer system. The closest surface water features to the Site are Willet Creek approximately 1 kilometre (km) to the west, and the Don River approximately 1.1 km to the east.

1.1.2 Geology and Physiography

Physiographic mapping in the area indicates that the Site lies within the physiographic region of southern Ontario known as the South Slope (Chapman and Putnam, 2007). The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till and at depth consists of alternating deposits of dense lacustrine sands and silts

and over consolidated lacustrine clays and clay tills overlying the bedrock. Geological mapping conducted by the Ontario Geological Survey (OGS) indicates that the surficial geology at the Site consists of stone-poor silty sand to sandy silty till (OGS, 2010).

1.1.3 Groundwater Use

It is expected all the properties within 500 m of the Site are connected to the municipal water supply system. A review was conducted of the Ministry of the Environment, Conservation and Parks (MECP) water well database in the vicinity of the Site (Appendix B). The MECP records indicate 52 water well records are located within approximately 500 m of the Site, and all of the records are associated with monitoring wells (i.e., observation wells) completed at depths of between 2 and 6 mbgs. No water supply well records were noted within 200 m of the Site.

1.2 Scope of Work

The scope of work for the hydrogeological investigation consisted of:

- Assessing the local hydrogeological setting of the site based on a review of published information sources, including topographic and geologic mapping, the MECP Water Well Record database and available sitespecific reports;
- Completing a drilling and monitoring well installation program as part of the concurrent geotechnical investigation. Five monitoring wells were installed at the Site;
- Conducting single-well response testing at each monitoring well to estimate the hydraulic conductivity of the material adjacent to the screened intervals;
- Collecting groundwater samples from one of the monitoring wells (plus one QA/QC duplicate sample), for analysis of the City of Toronto sewer use by-law parameters;
- Monitoring groundwater levels at each well on six events over a period of three months (i.e., bi-weekly measurements);
- Assessing adjacent infrastructure and providing comments on potential geotechnical impacts (i.e., settlement) from dewatering on structures within the zone of influence; and,
- Preparing a report summarizing the methods, data and findings of the investigation, including characterization of subsurface conditions based on field findings and a description of the groundwater quality including an assessment of potential groundwater discharge options (i.e., provide a comparison of existing groundwater quality to the sewer discharge limits). The report includes an estimate of short-term dewatering rates for construction purposes and long-term dewatering rates for a permanent sub-grade drainage system based on available designs provided to Golder, an assessment of dewatering impacts to surrounding features, comments on discharge management and comments on the need for water taking permitting from the MECP.

2.0 INVESTIGATION PROCEDURE

2.1 **Drilling and Well Installations**

The combined drilling investigation for this assignment was carried out from March 19 to 27, 2020, during which time five boreholes (designated as BH20-1 to BH20-5) were advanced. The boreholes for the investigation were drilled using a standard truck-mounted CME75 drill rig supplied and operated by DBW Drilling Limited of Ajax, Ontario, subcontracted to Golder. The approximate borehole locations are shown on the Figure 2. The monitoring wells each consisted of a 50-millimetre (mm) diameter PVC riser pipe, with a slotted screen sealed at a selected depth within the borehole. A sand filter pack was placed around the screen, and above the screen the annular space was backfilled to the surface with bentonite. The borehole logs and well completion details are provided in Appendix C.

The field work for this investigation was observed by members of Golder's technical staff, who located the boreholes in the field, arranged for the clearance of underground utilities, observed the borehole drilling, sampling and in situ testing operations, logged the boreholes as well as examined and took custody of the recovered soil samples.

The geodetic ground surface elevations at the borehole locations were determined from elevation references taken from a survey plan provided by FCAM, titled, "Topographic Plan of Part of Blocks B and C, Registered Plan 4545, City of Toronto," prepared by Schaeffer Dzaldov Bennett Ltd., dated June 26, 2013, and as such, the elevations given on the Record of Borehole sheets and referred to herein should be considered to be approximate.

2.2 Soil Conditions

In general, the subsurface conditions encountered at the boreholes consisted of the existing pavement structure underlain by fill, extending to depths ranging from about 0.3 to 1.0 m below the existing ground surface. The native material at the Site generally consisted of interlayered deposits of silty clay, clayey silt, silt and silty sand till. A deeper silty clay/clayey silt unit was noted at the bottom of each borehole. The soil consistency generally varied from hard to very dense. Table 1 (below) summarizes the general geological conditions at the Site based on the results of the drilling program. Figure 3 illustrates the inferred geologic profile at the Site.

Table 1. Site Geology	
Stratigraphic Unit	

Table 1: Site Goolegy

Stratigraphic Unit	Approximate Depth (mbgs)
Fill	0.0 – 1.0
Interlayered silt, silty sand, and silty clay till	0.4 – 14.0
Silty clay/clayey silt till	8.5 – 17.0

The Record of Borehole sheets indicate the subsurface conditions at the borehole locations only. The stratigraphic boundaries shown on the borehole records are inferred from non-continuous sampling, observations of drilling progress as well as results of Standard Penetration Tests and, therefore, typically represent transitions between soil types rather than exact planes of geological/stratigraphic change. Subsurface soil conditions will vary between and beyond the borehole locations.

2.3 Groundwater Level Measurements

Water level measurements for the current investigation were collected at the Site starting in May 2020. Water levels were measured at each location with an electronic water level tape, which was cleaned between well locations. Table A (attached) provides a summary of all available water level measurements, including measurements collected to date as part of the current study.

The depth to groundwater at the Site was found to be at depths ranging from approximately 3.3 m below ground surface (bgs) to 4.5 mbgs. The water levels generally declined on the order of 5 to 10 centimetres (cm) over the period of monitoring between May and July, which is generally consistent with seasonal water level fluctuations over the summer months in southern Ontario. The lateral groundwater flow direction in the shallow overburden is to the east (Figure 2). It is expected that depth to groundwater at the Site will vary both on a seasonal and year over year basis.

2.4 Hydraulic Conductivity

Single-well response testing was carried out by Golder on May 13, 2020 at each of the newly installed monitoring wells. This testing was carried out by rapidly purging a known volume of water from each well with a dedicated disposable bailer and monitoring the subsequent water level recovery.

The Bouwer-Rice (1976) method for unconfined conditions was applied to rising head test data. The data was analyzed using the AQTESOLV for Windows version 4.50 Professional software. The single-well response testing AQTESOLV printouts are provided in Appendix C. The hydraulic conductivity values for the various overburden units ranged from about 1×10^{-8} to 3×10^{-9} m/s in the silty clay till and 1×10^{-7} to 3×10^{-6} m/s in the silty and silty sand (see Table A, attached).

2.5 Groundwater Quality

Groundwater quality samples were collected from monitoring well BH21-3 on June 27, 2022, according to standard environmental practices. The samples were stored on ice following collection, and were delivered to AGAT Laboratories of Mississauga, Ontario for analysis of the parameters stipulated under the City of Toronto Municipal Code, Chapter 681 by-law. The laboratory analytical data sheets are provided in Appendix D. The sampling results indicate that the concentrations of all the parameters stipulated under the by-law were below their respective by-law limit values for both storm and sanitary sewer discharge.

3.0 DEWATERING EVALUATION

Based on the design information currently available the proposed development consist of two towers (22 and 17 storeys) connected by a 6-storey podium. All of the buildings will have a common underground parking structure extending to two levels below grade, which will be approximately 6 m below finished grade. The geotechnical report (Golder, 2020) indicates that the depths for the shallow foundations will be 1 to 2 m below the finished basement floor and suggests the deepest footing base elevation would be approximately 139.1 masl. The highest measured water table elevation at the Site is approximately 141.3 masl (Table A). As such it is expected that placement of the foundations and bottom building slab would be a maximum of 2.2 m below the water table, and in excavation control of groundwater and incident precipitation will be required. Based on the geological profile (Figure 3) it is expected that groundwater inflow would occur primarily from within the uppermost silty sand/sandy silt till.

F or the purpose of determining dewatering rates and the zone of influence (ZOI), Golder has assumed that dewatering will be carried out as follows:

- The groundwater level will be controlled at no more than 0.5 m below the base on the footing levels (i.e., a minimum of 138.6 masl);
- Surface water runoff will be directed away from any open excavation; and,
- Groundwater should be pumped in a manner to prevent loss of ground.

Regardless of the above assumptions, the method of construction dewatering is to be solely determined by the Contractor based on their own assessment of the Site-specific conditions, and likely by their specialist dewatering contractor.

3.1 Drawdown Estimate

The amount of drawdown in the water table will depend on both the depth to groundwater and depth of the required excavations. The measured depth to groundwater was found to vary across the Site, ranging from about 3.3 to 4.6 m bgs, or from about 138.5 to 141.3 masl. As the water level measurements were collected during the late spring it is expected that the recorded measurements are close to the seasonal high water levels for the Site. Excavations for footing installations would run the length of the proposed building. Based on the conceptual drawings provided by the Client the building footprint will be approximately 100 m long from east to west, and 50 m wide from north to south. As shown on Figure 3, the depth to groundwater will vary over the excavation length, gradually dropping from west to east. To provide a conservative estimate of the required drawdown the highest measured groundwater elevation (141.3 masl) was compared to the lowest required water level (138.6 masl), for a maximum required drawdown of 2.8 m.

3.2 Water Taking Needs

In order to estimate the potential dewatering requirements for utility excavation at the Site the dewatering Zone of Influence (ZOI) must be calculated. The ZOI represents the lateral extent of groundwater drawdown in response to potential dewatering. Applying the Sichart and Kyrieleis empirical relationship, the lateral extent of groundwater level drawdown is estimated as follows:

$$R_0 = 3000s \sqrt{K}$$

Where:

 R_0 = distance to zero drawdown (i.e., limit of influence) (m);

s = theoretical drawdown at the excavation wall; and

K = hydraulic conductivity of the material

Using the geometric mean of the measured hydraulic conductivity measurements in the silty and silty sand $(1 \times 10^{-6} \text{ m/s})$ and the estimated maximum required drawdown of 2.8 m, the ZOI, which is taken as the distance to zero drawdown, is calculated to be 8 m.

3.3 Construction Dewatering Rates

To assess potential dewatering rates within the surficial deposits to allow excavation of the proposed building footprint, the steady state dewatering rate is estimated for an unenclosed excavation 100 m long by 50 m wide with a maximum drawdown of 2.8 m. The dewatering rate ("Q") is estimated using a modified version of Jacob's equation for unconfined aquifer conditions:

$$Q = \left[\frac{xK(H^2 - h_w^2)}{2L}\right]$$

Where:

Q = Dewatering rate (m ³ /s)	K = hydraulic conductivity (1 x 10^{-6} m/s)
H = initial groundwater level (2.8 m)	h = final groundwater level (0 m)
x = excavation wall length (300 m)	L = zone of influence, ZOI (8 m)

Based on the above information the steady-state dewatering rate for the full excavation footprint is calculated to be 14 m^3 /day. Assuming a safety factor of two to provide a conservative estimate, the steady dewatering rate is therefore assumed to be 28 m^3 /day.

Additional inflow will occur as a result of pore water storage release from the till material within the ZOI (a soil volume of approximately 1,120 m³ or 112 m³ of pore water (assuming a specific yield of 10%). The rate of this storage release is, in part, dependent on the rate of excavation. In this case, we assume that the overall excavation would be completed within a 14-day period, resulting in an additional 8 m³/day of inflow. Finally, assuming a 30 mm rain event occurs over the excavation area during the higher dewatering rate period, another 150 m³ of water would require removal. Assuming removal of the incident rainfall within one day, an estimated total water taking of 172 m³/day would be required for construction dewatering purposes as part of subsurface construction activities. Management and disposal of groundwater and incident rainfall will be required during construction. Options for disposal typically include off-site trucking and disposal or discharge to the municipal sewer system. A temporary discharge permit would be required if discharge the sewer system is to be implemented.

Based on the above calculations the construction dewatering requirements for subsurface construction activities will be below the 400 m³/day threshold for a Permit to Take Water, and but will be above the 50 m³/day threshold for an Environmental Activity Sector Register (EASR).

3.4 Long-Term Drainage

It is understood that the current design plans include use of a water-tight (i.e., tanked or bath-tubbed) foundation. As such, there will be no long-term post-construction dewatering activities or water taking/discharge at the Site.

4.0 ASSESSMENT OF POTENTIAL DEWATERING EFFECTS

4.1 Geotechnical Assessment

Section 3.2 discusses the lateral extent of the anticipated groundwater drawdown for the proposal excavation due to temporary construction dewatering. The drawdown curve indicates that:

- The drawdown is zero at approximately 8 m from the pumping source in the fill and native deposits;
- For a drawdown of about 1.0 m in the fill and non-cohesive native deposits, the distance from the pumping source is approximately 5 m; and,
- The maximum anticipated drawdown is 2.8 m at the edge of the planned excavation.

For the purpose of this assessment, the predicted zone of influence due to groundwater dewatering will depend on the depth of excavations, lateral extent (width) of the excavations and most importantly the depth and locations of the dewatering well points (if any) from the structures. Lowering of the groundwater table by about 1.0 m at the nearest foundations / structures will result in an increase in effective stress of about 10 kPa. As this is a relatively small increase, the impacts of such groundwater lowering are considered to be negligible at distances beyond 5 m from the pumping source. The maximum drawdown of 2.8 m will result in an increase in effective stress of about 28 kPa and, based on the stratigraphy encountered in the boreholes advanced at the Site, this temporary increase in effective stress is estimated to result in settlements of approximately 4 mm immediately adjacent to the point of groundwater extraction.

A review of the Site indicates that along the western boundary two buildings are located about 5 m away from the property line. Settlements induced by dewatering at a distance of 5 m from the pumping source are estimated to be about 1 mm. Along the north, east and south boundaries, the light poles and signs are located along the sidewalk about 3 m from the property boundary. At a distance of 3 m from the property line, an estimated maximum settlement of only about 2.5 mm would be anticipated at the ground surface. Considering the maximum anticipated settlement and the distances of the adjacent structures, buildings, utilities, electrical poles or signs from the property line, the impacts of the dewatering can be considered to be negligible.

4.2 Groundwater Resources

As noted in Section 1.1.3, no private water wells are located within the immediate vicinity of the Site or within the estimated ZOI, and the entire Site is outside of any wellhead protection area for water quantity or quality. Based on the estimated dewatering requirements and dewatering zone of influence (ZOI) (see Section 3.2) as part of the construction activities, it is not anticipated that temporary dewatering activities pose a risk to any water supply wells.

4.3 Surface Water Resources

Disposal options for diverted water are expected to include off-Site trucking or discharge to the sewer system. No watercourse features are located in close proximity to the Site. Based on the small size of the predicted ZOI, and the temporary nature of dewatering and discharge activities, dewatering activities are not expected to have any effect on surface water features or on the natural environment.

5.0 CLOSURE

We trust that this report is suitable for your current requirements. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Golder Associates Ltd.

David Dillon, P.Geo. *Hydrogeologist*

DD/MAS/sat

Mark A. Swallow, M.A.Sc., P.E., P.Eng. *Geotechnical Engineer VIII, Fellow*

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates-my.sharepoint.com/personal/sttimpano_golder_com/documents/desktop/19129918 fcam rpt 2022'07'13 895 lawrence-finalrev0.docx

REFERENCES

Chapman, L.J., and Putnam, D.F., 2007, *"The Physiography of Southern Ontario"*; 4th Edition, Ontario Geological Survey.

Ontario Geological Survey. 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV.

Table A

Table A Groundwater Level Measurements

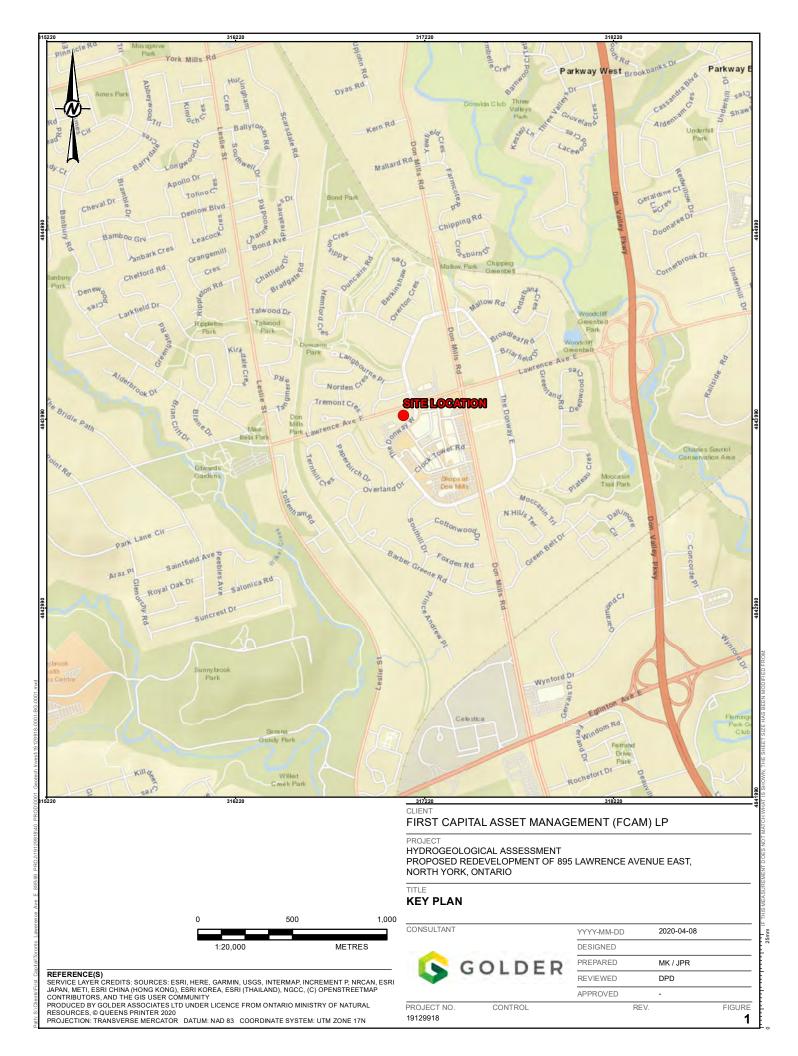
Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Stick-up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
BH20-1	12.20	142.90	-0.10	13-May-20	4.30	4.40	138.50	1.0E-07	silty clay/silty sand
				21-May-20	4.29	4.39	138.51		
				5-Jun-20	4.25	4.35	138.55		
				16-Jun-20	4.26	4.36	138.54		
				7-Jul-20	4.31	4.41	138.49		
				22-Jul-20	4.34	4.44	138.46		
BH20-2	17.80	144.00	-0.10	13-May-20	3.44	3.54	140.46	3.5E-09	silty clay/clayey silt till
				21-May-20	3.79	3.89	140.11		
				5-Jun-20	3.68	3.78	140.22		
				16-Jun-20	3.57	3.67	140.33		
				7-Jul-20	3.58	3.68	140.32		
				22-Jul-20	3.57	3.67	140.33		
BH20-3	12.20	145.80	-0.10	13-May-20	4.36	4.46	141.34	3.4E-06	silt
				21-May-20	4.37	4.47	141.33		
				5-Jun-20	4.40	4.50	141.30		
				16-Jun-20	4.38	4.48	141.32		
				7-Jul-20	4.40	4.50	141.30		
				22-Jul-20	4.52	4.62	141.18		
BH20-4	11.70	143.60	-0.10	13-May-20	3.21	3.31	140.29	3.6E-06	silty sand/silt
				21-May-20	3.23	3.33	140.27		
				5-Jun-20	3.24	3.34	140.26		
				16-Jun-20	3.25	3.35	140.25		
				7-Jul-20	3.26	3.36	140.24		
				22-Jul-20	3.26	3.36	140.24		

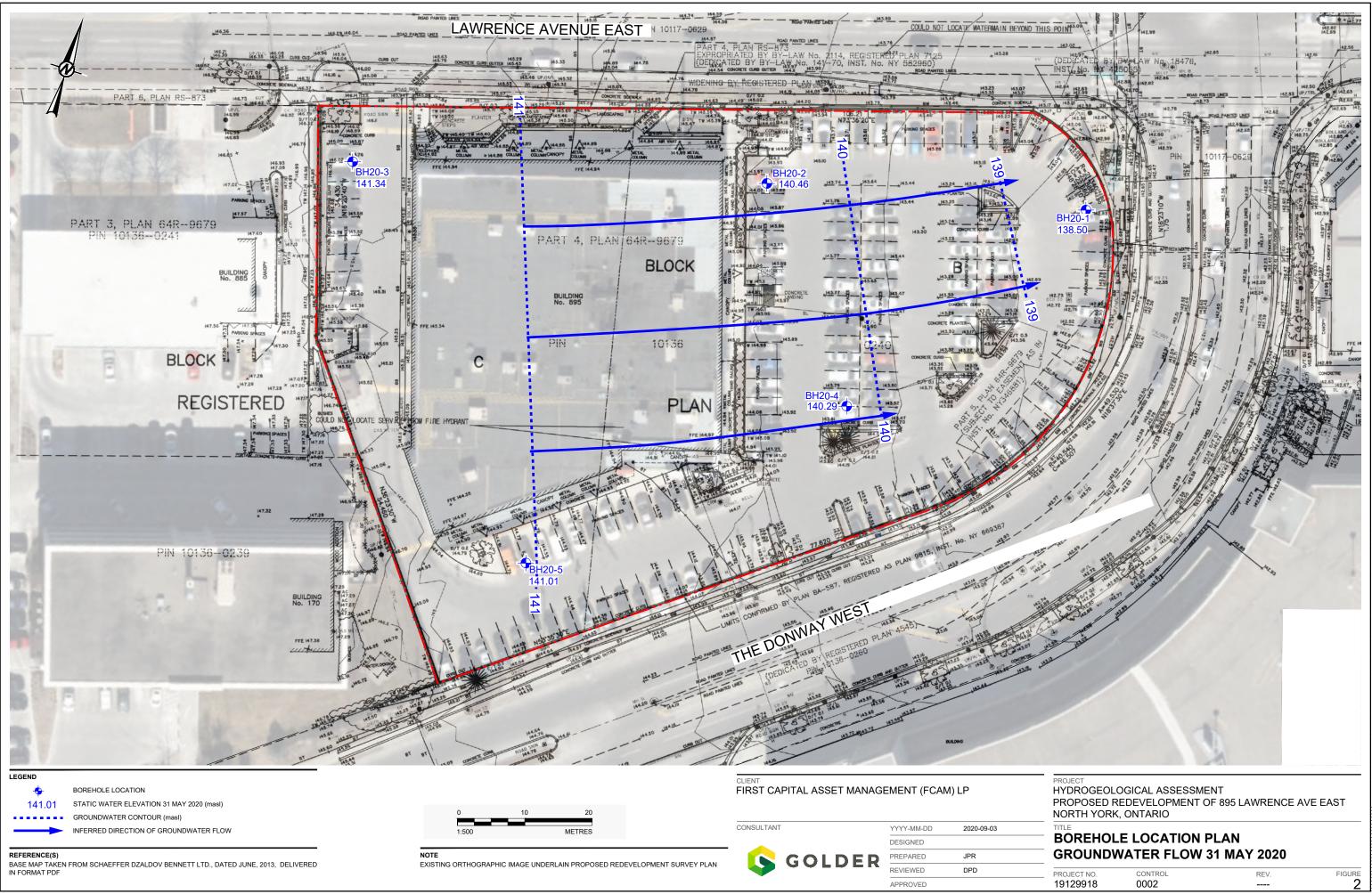
Table A Groundwater Level Measurements

Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Stick-up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
BH20-5	16.8	144.6	-0.06	13-May-20	3.53	3.59	141.01	1.1E-08	silty clay/clayey silt till
				21-May-20	3.47	3.53	141.07		
				5-Jun-20	3.50	3.56	141.04		
				16-Jun-20	3.50	3.56	141.04		
				7-Jul-20	3.56	3.62	140.98		
				22-Jul-20	3.60	3.66	140.94		

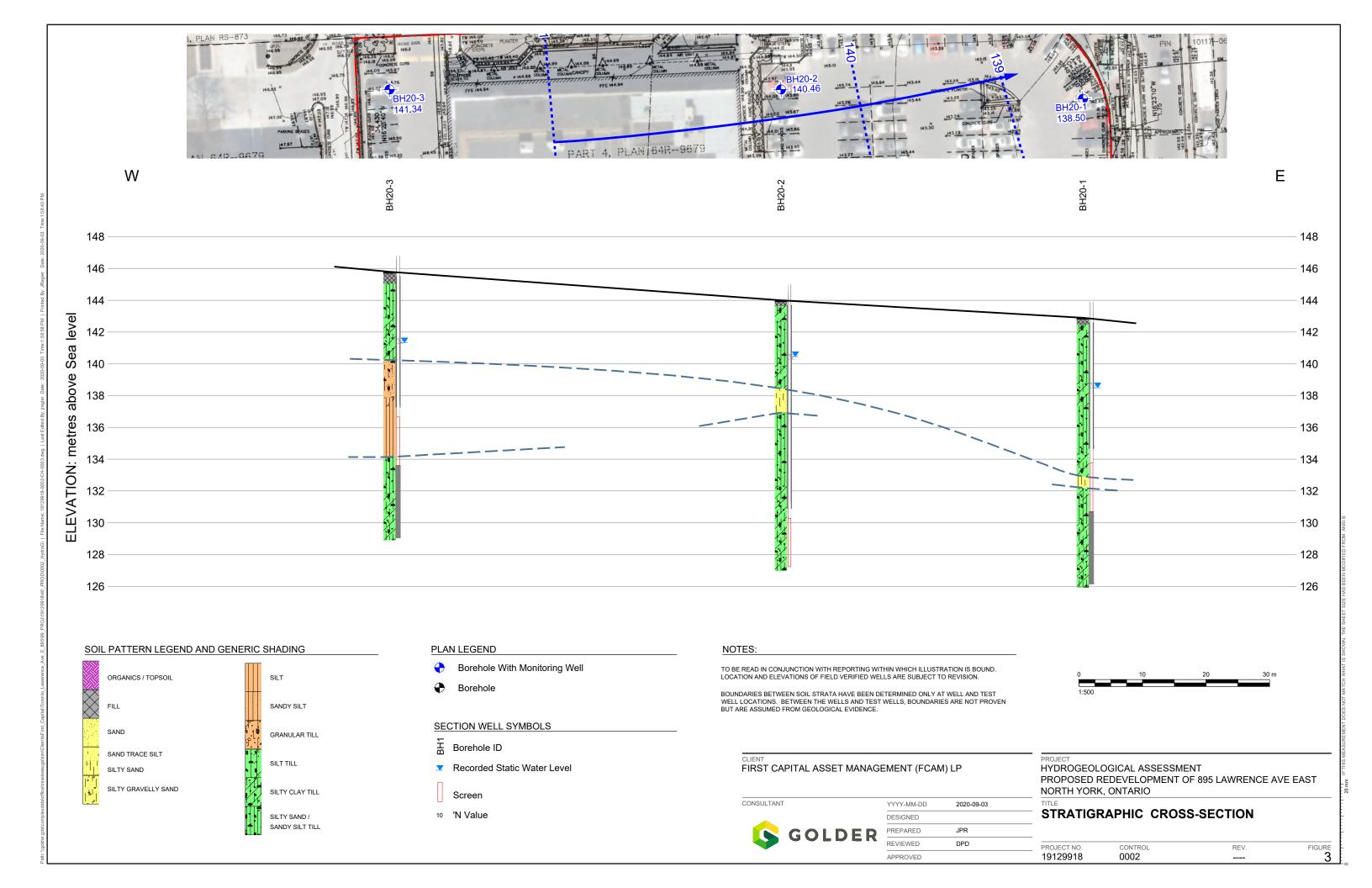
Notes:

1. m toc meters below top of casing


2. masl meters above sea level


3. m bgs meters below ground surface

4. Table to be read in conjunction with accompanying report


5. Superscript ¹ denotes approximate stickups

Figures

TIT TO A THE MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS

APPENDIX A

Important Information and Limitations

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

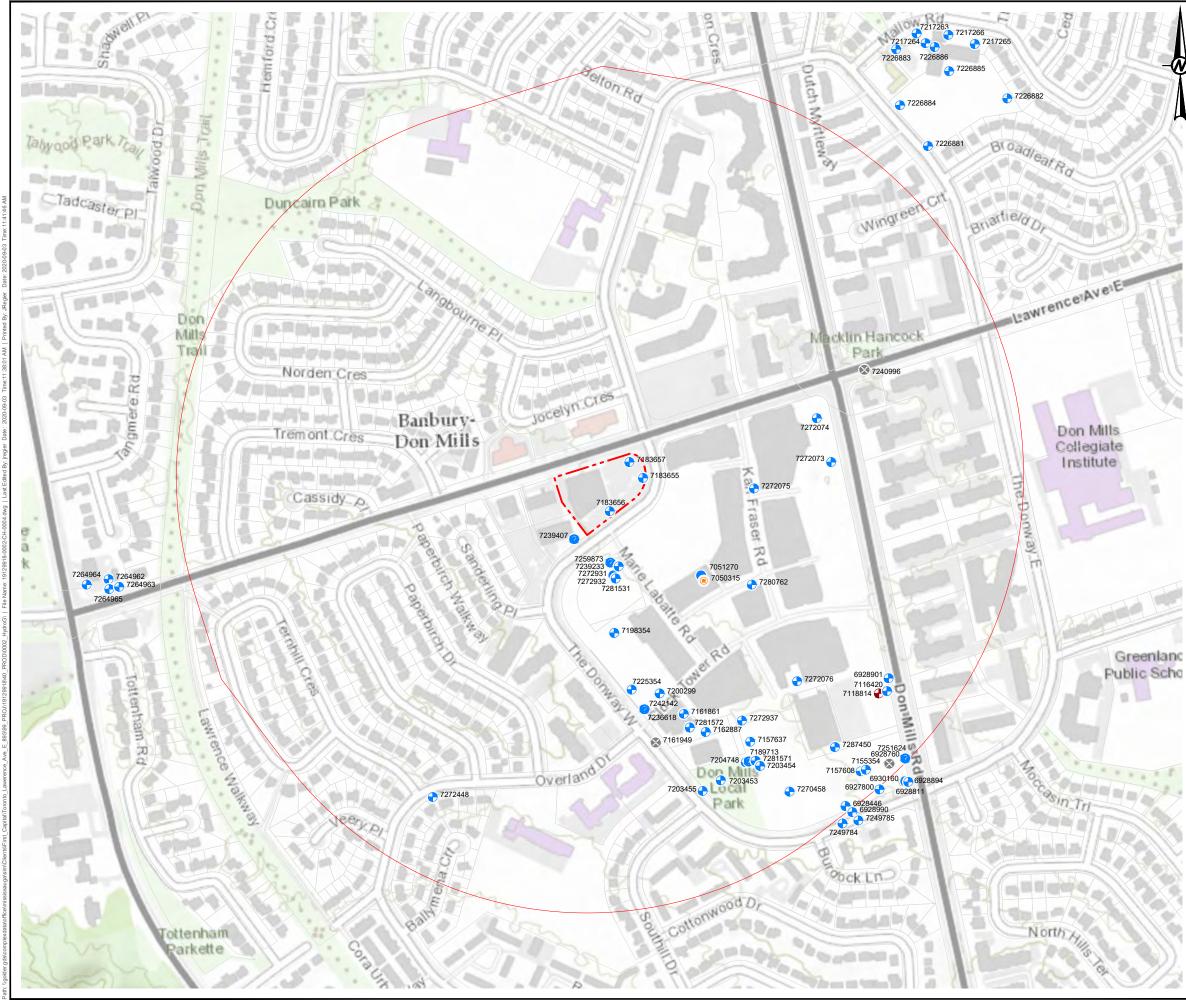
Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.


During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

Water Well Database Records

MAP KEY

PLAN LEGEND

D	EVELOPMENT	BOUNDARY	WITH	500 m	OFFSET
---	------------	----------	------	-------	--------

- SANDPOINT / DEWATERING PIEZOMETER
- DRILLED OVERBURDEN WELL
- TEST OR OBSERVATION WELL
- MONITORING NEST CENTROID

REFERENCES & DISCLAIMERS

MINISTRY OF ENVIRONMENT WATER WELL INFORMATION SYSTEM, QUEEN'S PRINTER. LOCATION AND ELEVATIONS OF MAPPED WELLS ARE SUBJECT TO REVISION BASED ON DRILL RECORD OR FIELD VERIFICATION.

ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

0	100	200	300 m
1:5000			
PLOTTED	11X17" TABLOID	PROJECTION	IS UTM NAD 83 ZONE 17

CLIENT FIRST CAPITAL ASSET MANAGEMENT (FCAM) LP

PROJECT HYDROGEOLOGICAL AND GEOTECHNICAL EXPLORATION PROPOSED REDEVELOPMENT OF 895 LAWRENCE AVE EAST NORTH YORK, ONTARIO

MINISTRY RECORDED WELLS

GOLDE

CONTROL

0002

PROJECT NO. 19129918

CONSULTANT

D	YYYY-MM-DD		2020-09-03	
	DESIGNED			
	PREPARED		JPR	
	REVIEWED		DPD	
	APPROVED			
		REV.		FIGURE
				4

LABEL CON	DATE		ELEV		CR TOP LEN	SWL RATE				
		NORTHING	masl	mbgl Qu	mbgl m	mbgl L/mii	n min			DESCRIPTION OF MATERIALS
6927800	Mar-04		127.1		4.9 -3.0	NR		6607	OW	MOE# 6927800 TAG#A010211
		4843470						-	-	0.0 BRWN SAND GRVL FILL 3.0 BRWN SAND 7.9
6928446	Jun-04	633415	146.3		13.1 -6.1	NR		6809	OW	MOE# 6928446 TAG#A011041
		4843448						OTH	-	0.0 BRWN SAND SILT 2.1 BRWN SILT SAND 4.9
										GREY SILT 7.9 BRWN SAND 18.0 GREY SILT 19.5
6928760	Feb-05	633473	143.3			NR		6607	AB	MOE# 6928760
		4843504						BR	NU	0.0
6928811	Feb-05	633498	89.6	12.2 Un	16.8 -1.5	NR		6607	OW	MOE# 6928811 TAG#A021364
		4843480						-	-	0.0 BRWN SILT SAND 1.5 BRWN SAND 13.7 GREY
										SILT CLAY 18.3
6928894	Mar-05	633494	144.2	12.5 Fr	11.6 -6.4	NR		6607	-	MOE# 6928894 TAG#A021364
		4843481						BR	-	0.0 BRWN SAND 17.7 GREY CLAY SILT 18.0
6928901	Feb-05	633472	140.5	7.0 Fr	5.2 -3.0	NR		6607	OW	MOE# 6928901 TAG#A021374
		4843617						-	-	0.0 BRWN SAND DRY 7.0 BRWN SAND WBRG 7.6
										GREY CLAY SILT DNSE 8.2
6928990	Apr-05		146.6		11.9 -6.1	NR		1129	OW	MOE# 6928990 TAG#A025755
		4843440						OTH	-	0.0 BRWN SAND SILT WBRG 15.8 BRWN SAND LOOS
										DNSE 17.4 GREY SILT DNSE 18.0
6930160	Apr-06	633492	144.2		16.5 -1.5	NR		6607	AB	MOE# 6930160 TAG#A021364
		4843480						BR	-	0.0
7050315	Sep-07	633224	143.0	0.9 Fr		NR		6926	-	MOE# 7050315 TAG#A058475
		4843753						OTH	DW	0.0 GREY SILT SAND DRY 2.1 GREY SILT SAND
										SLTY 7.0
7051270	Sep-07	633224	143.0			NR		6926	-	MOE# 7051270 TAG#A058475
		4843753						-	-	0.0 GREY SILT TILL SAND 2.1 GREY SILT TILL
										SAND 7.0
7116420	Oct-08	633470	140.8		5.2 -3.4	NR		6032	OW	MOE# 7116420 TAG#A021374
		4843600						BR	MO	0.0 WHTE HARD 0.3 BRWN SILT CLAY DNSE 5.8
										BRWN SAND CSND SOFT 7.6 GREY SILT CLAY DNSE
										8.5
7118814	Sep-08	633459	141.4	7.9 Fr		NR		6607	TH	MOE# 7118814 TAG#A078548
		4843597						-	MO	0.0 BRWN SAND GRVL CLAY 1.5 BRWN MSND DNSE
										9.1 GREY SILT CLAY DNSE 9.4
7155354	Oct-10	633442	143.6		9.8 -3.0	NR		6032	OW	MOE# 7155354 TAG#A093909
		4843496						-	MO	0.0 BRWN SAND GRVL PCKD 0.9 BRWN SAND SILT
										HARD 12.8
7157608	Dec-10	633435	143.9		11.0 0.0	NR		7215	TH	MOE# 7157608 TAG#A108050
		4843494						RC	TH	0.0 BRWN FILL 0.6 BRWN SAND SLTY 11.0
7157637	Nov-10	633289	146.3		10.7 0.0	NR		7215	TH	MOE# 7157637 TAG#A108048
		4843533						RC	TH	0.0 BRWN FILL CGVL SAND 0.9 BRWN SAND 1.8
										BRWN TILL SILT GRVL 4.3 GREY TILL SILT GRVL
										7.6 GREY TILL SILT GRVL 9.1 GREY SILT SAND
										WBRG 10.7
7161861	Feb-11	633201	146.3	6.1 Un	9.1 -3.0	NR		6607	OW	MOE# 7161861 TAG#A110331
		4843570						BR	МО	0.0 BRWN SAND GRVL FILL 0.6 GREY SILT CLAY
										DNSE 4.6 GREY SILT SAND DNSE 6.1 GREY SAND
										LOOS 12.2

LABEL CON LOT	DATE mmm-yr	EASTING NORTHING		WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL R mbgl L		IME min			E WELL NAME T DESCRIPTION OF MATERIALS
7161949	Mar-11	633164 4843532	147.5			NR			721	5 AB	MOE# 7161949 0.0
7162887	Nov-11	633230	146.3		11.6 -3.4	NR			724		
102001		4843546	140.0		11.0 0.4				BR		
											14.9
7183655	Jun-12	633147	143.6		1.8 -1.5	NR			724	1 TH	
		4843882							OTI		
7183656	Jun-12	633103	144.2		2.4 -3.0	NR			724	1 TH	
		4843838							OTI		
7183657	Jun-12	633129	143.6		3.0 -3.0	NR			724	1 TH	
		4843903	110.0		0.0 0.0				OTI		
7189713	Jul-12	633287	146.6			NR			660	7 -	MOE# 7189713 TAG#A132975
1100110		4843507	140.0						-	-	0.0
7198354	Feb-13	633109	146.9	8.5 Un	7.6 -3.0	NR			750	1 TH	
		4843677							RC		
7200299	Mar-13	633169	146.6	10.7 Un	10.7 -3.0	NR			750	1 TH	
		4843597							RC		0.0 BRWN CLAY SILT SAND 10.7 BRWN SAND SILT LOOS 13.7
7203453	Jun-13	633250	146.9		10.7 -3.0	NR			723	8 OW	MOE# 7203453 TAG#A146066
		4843482							BR		0.0 BRWN FILL GRVL PCKD 1.5 BRWN CLAY SILT HARD 4.6 GREY SILT SAND HARD 9.1 GREY SILT HARD CLAY 13.7
7203454	Jun-13	633302	146.6		15.2 -1.5	NR			723	8 OW	
1200101		4843501	11010		10.2 1.0				BR		
7203455	Jun-13	633226	147.5		10.7 -3.0	NR			723	8 OW	
1200100		4843468	147.0		10.7 0.0				BR		
7204748	Jul-13	633283	146.6	12.2 Un	24.4 -1.5	NR			723	8 OW	
7204740	Jui-13	4843506	140.0	12.2 011	24.4 -1.5	INIX			OTI		0.0 GREY SAND SILT 10.7 GREY SAND SILT 23.2
7225354	Jun-14	633132	147 2		7.6 -1.5	7.9	5	7	8.8 166	3 ТН	GREY SILT CLAY 25.3 GREY SAND SILT 25.9 MOE# 7225354 TAG#A146978
1220004	Juli-14	4843602	177.2		7.0 -1.5	1.5	5	,	RC		
											SAND GRVL 9.1
7236618	Nov-14	633149 4843576	147.2			NR			692	6 -	MOE# 7236618 TAG#A162886 0.0
7239233	Oct-14	633103	145.7			NR			723	- 0	MOE# 7239233 TAG#A170981
,200200	001-14	4843770	170.7						-	-	0.0

LABEL CON LOT		EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	CR TOP LEN mbgl m	SWL RATE mbgl L/min			WELL NAME DESCRIPTION OF MATERIALS
7239407	Apr-14	633056	146.0	mbgr Qu	mbgi m	NR	6809	- 31A1	MOE# 7239407 TAG#A152289
		4843801					-	-	0.0
7240996	Feb-15	633440	139.6	1.5 Un		NR	7247	AB	MOE# 7240996
7242142	Apr-15	<u>4844025</u> 633149	147.2			NR	- 6926	-	0.0 MOE# 7242142 TAG#A162886
1242142	Apr-15	4843576	147.2				- 0920	-	0.0
7249784	Jul-15	633411	147.2	14.3 Un	13.7 -3.0	NR	6607	OW	MOE# 7249784 TAG#A179876
		4843425					BR	TH	0.0 0.3 SAND TILL 2.1 SAND 16.8
7249785	Jul-15	633432	146.9	13.7 Un	13.7 -3.0	NR	6607	OW	MOE# 7249785 TAG#A179875
		4843429					BR	TH	0.0 0.3 SAND TILL 2.1 SAND 16.8
7251624	Oct-15	633494	143.0			NR	6607	-	MOE# 7251624 TAG#A192859
		4843511					-	-	0.0
7259873	Nov-15	633104	145.7			NR	7230	-	MOE# 7259873 TAG#A199749
		4843770					-	-	0.0
7270458	May-16	633341	146.9		9.1 -3.0	NR	6032	OW	MOE# 7270458 TAG#A194307
		4843467					BR	MO	0.0 BRWN SAND SILT DNSE 4.6 GREY SILT SAND
									DNSE 10.4 GREY SILT SAND DNSE 12.2
7272073	Aug-16	633396	142.0		5.2 -3.0	NR	7241	-	MOE# 7272073 TAG#A205727
		4843903					RC	-	0.0 BRWN CLAY 3.7 GREY CLAY 8.2
7272074	Aug-16	633377	141.7		1.5 -3.0	NR	7241	-	MOE# 7272074 TAG#A205728
		4843961					RC	-	0.0 BRWN SAND GRVL WBRG 4.6
7272075	Aug-16	633294	142.3		4.9 -3.0	NR	7241	-	MOE# 7272075 TAG#A205729
		4843868					RC	-	0.0 BRWN SAND GRVL WBRG 3.7 GREY SAND SILT
7272076	Aug 16	633351	142.3		5.2 -3.0	NR	7241		WBRG 7.6 GREY SAND SILT TILL 7.9 MOE# 7272076 TAG#A205731
1212010	Aug-16	4843613	142.3		5.2 -3.0		RC	-	0.0 BRWN TILL SILT CLAY 6.1 GREY TILL SILT
		4043013					ΝŪ	-	SAND 8.2
7272448	Sep-16	632869	144.2		1.5 -1.5	NR	6902	OW	MOE# 7272448 TAG#A184387
		4843460					-	MO	0.0
7272931	Jul-16	633115	145.7	4.3 Un	5.5 -3.0	NR	6875	OW	MOE# 7272931 TAG#A199861
		4843765					RC	MO	0.0 BLCK WSTE GRVL 0.3 GREY TPSL SAND LOOS
									1.8 GREY SILT FSND HARD 3.4 BRWN CSND FSND
									WBRG 7.0 GREY SILT CLAY DNSE 8.5
7272932	Jul-16	633108	146.0	7.6 Un	21.6 -1.5	NR	6875	-	MOE# 7272932 TAG#A199862
		4843753					RC	-	0.0 GREY GRVL WSTE 0.3 GREY TPSL SILT SAND
									1.8 GREY SILT FSND HARD 3.4 BRWN CSND FSND
									SILT 7.0 GREY SILT CLAY SAND 11.6 GREY CLAY
7272937	Jul-16	633278	146.0	7.6 Un	9.1 -3.0	NR	6875	OW	SILT FSND 22.9 MOE# 7272937 TAG#A199863
1212331	Jui-10	4843561	140.0	1.0 011	9.1-3.0	INFN	RC	MO	0.0 BRWN TPSL SAND CLAY 1.8 BRWN SILT CLAY
		4040001					ΝU	WO	FSND 4.6 BRWN FSND SILT DNSE 8.8 BRWN SAND
									GRVL SILT 11.6 GREY CLAY SILT SOFT 11.9
7280762	Aug-16	633291	141.7		6.1 -3.0	NR	7241	-	MOE# 7280762 TAG#A205730
		4843741			0.1 0.0		RC	-	0.0 BRWN SAND GRVL 6.1 GREY SAND SILT 9.1
7281531	Jun-16	633111	146.0		6.1 -3.0	NR	6032	OW	MOE# 7281531 TAG#A202410
		4843749			0.1 0.0		BR	MO	0.0 BRWN SAND GRVL SOFT 2.4 BRWN SILT SAND
		1010110					DIX		DNSE 6.1 GREY SAND SILT DNSE 9.1

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING		WTR FND mbgl Qu	CR TOP LEN mbgl m		RATE L/min	TIME min	PL DRILLER mbgl METHOD		WELL NAME DESCRIPTION OF MATERIALS
7281571		Jun-16	633296	146.6		18.3 -3.0	NR			6032	OW	MOE# 7281571 TAG#A202433
			4843508							BR	MO	0.0 GREY SILT GRVL DNSE 16.8 BRWN SAND SILT WBRG 21.3
7281572		NR	633209	146.3		10.7 -3.0	NR			6032	OW	MOE# 7281572 TAG#A202410
			4843552							BR	MO	0.0 GREY SILT SAND DNSE 10.7 BRWN SAND WBRG
												13.7
7287450		Aug-16	633401	144.2		18.3 -3.0	NR			6032	OW	MOE# 7287450 TAG#A202384
			4843526							BR	MO	0.0 BRWN SAND SILT DNSE 16.8 BRWN SAND DNSE 21.3

	QUALITY:		TYPE:		USE	:		М	ETHOD :
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	СТ	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy. Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

APPENDIX C

Borehole Logs

Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{30^{2}}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name								
	Gravels with ≤12% Gravess ±raction is fines (by mass)		Poorly Graded		<4		≤1 or i	≥3		GP	GRAVEL								
5 mm)			tines (J221≥ 12%) fines (by mass)		Well Graded		≥4		1 to 3	3		GW	GRAVEL						
SOILS an 0.07	GRA\ 50% by arse fr er than	Gravels with	Below A Line	r		n/a				GM	SILTY GRAVEL								
AINED ger tha	(>€ co large	>12% fines (by mass)	Above A Line			n/a			-00%	GC	CLAYEY GRAVEL								
SE-GR/ ss is lar	of is mm)	Sands with	Poorly Graded		<6		≤1 or	≥3	≤30%	SP	SAND								
COARS by mat	JDS 1 mass action n 4.75	fines fines (by mass)	Well Graded		≥6		1 to	3		SW	SAND								
(>50%	SAN 50% by barse fr	Sands with	Below A Line			n/a				SM	SILTY SAND								
	(≥t cc smal	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND								
0			Laboratera		I	Field Indica	ators	-	Ormania	11000 0	During and								
Group	Туре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Primary Name								
	nlot			Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT								
5 mm)	aller than 0.075 mm) SILTS Plastic or Pl and LL below A-Line Chan Plasticity	ity ow)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT								
OILS an 0.07		SILTS ic or PI low A-L i Plastic art beli	ic or Pl low A-L Plastic art bel	low A-L Plastic art bel	low A-L I Plastic art bel	low A-L i Plastic art bel	low A-I n Plastic art bel	Iow A-L Plastic art bel	ic or Pri low A-L Plastic art bel	ic or Pl low A-L I Plastic art bel		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT
VED So aller th		n-Plast be or Ch	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT								
-GRAII	ON)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT								
FINE by mas	olot	CLAYS and LL plot e A-Line on ticity Chart below)	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY								
(≥50%	CLAYS		Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	30%	CI	SILTY CLAY								
		Plas	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY								
ic 30% s)									30% to		SILTY PEAT, SANDY PEAT								
organ of mas						75		75%	PT										
° S	mineral so	oil, fibrous or							to 100%		PEAT								
iltý clay-clay	SILTY CI CL	AY	SILTY CLAY CI PIPE LAYEY SILT ML	CLAY CH CLAYEY S	REATHINGS		a hyphen, For non-cc the soil h transitiona gravel. For cohess liquid limit of the plass Borderlin separated A borderlin has been	for example, bhesive soils, as between il material b ive soils, the and plasticity ticity chart (s e Symbol — by a slash, fine symbol sh identified as	GP-GM, S the dual sy 5% and etween "c dual symb index val ee Plastici A borderl or example ould be us s having p	SW-SC and Cl ymbols must b 12% fines (i.e lean" and "di bol must be us ues plot in the ty Chart at left ine symbol is e, CL/Cl, GM/S sed to indicate properties that	L-ML. e used when e. to identify rty" sand or ed when the e CL-ML area t). two symbols SM, CL/ML. e that the soil t are on the								
	Conserved FINE-GRAINED SOILS Conserved Conserved by mass) FINE-GRAINED SOILS COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm) by mass (>50% by mass is smaller than 0.075 mm) (>50% by mass is smaller than 0.075 mm)	Condents > 30% I here Condents > 30% FINE-GRAINED SOILS Condents > 30% Condents > 30% Dy mass) EFINE-GRAINED SOILS Dy mass) Condress is smaller than 0.075 mm) Dy mass) (>50% by mass is smaller than 0.075 mm) Dy mass) (>50% by mass is smaller than 0.075 mm) Dy mass) (>50% by mass is smaller than 0.075 mm) Dy mass) (>50% by mass is smaller than 0.075 mm) Dy mass) (>50% by mass of coarse fraction is coarse fraction is coarse fraction is mailer than 4.75 mm)	Group I ype of Soll Group Gravels with \$12% with \$12% (by mass) (by mass) (councients > 30% primass) (councients > 30%	Group Type of Soil or Plasticity Group Soil Gravels with \$12% fines (by mass) Poorly Graded Gravels (by mass) Well Graded Well Graded Soil Group Sands (by mass) Below A Line Soil Group stads (by mass) Poorly Graded Soil Group stads (by mass) Well Graded Soil Group stads (by mass) Well Graded Soil Group Type of Soil Laboratory Tests Soil Group Type of Soil Laboratory Tests Soil Group SITTY CLAY Soil Sands (by mass) Liquid Limit <50	Group Type of Soll or Plasticity Cut Group Gravels Poorly Graded Well Graded (III) Velopics Gravels Below A Line Line (III) Velopics Sands Poorly Gravels Below A Line (III) Velopics Sands Below A Line Dilatancy (IIII) Velopics IIII Sands Below A Line (IIII) Velopics IIII Sands Below A Line (IIII) Velopics IIIII Sands Below A Line (IIII) Velopics IIIIIII Slow to very slow Slow to very slow Slow to very slow (IIIII) Velopics IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Soil Group Type of Soil (by mass) Caded (by mass) Poorly Graded <4 Soil Group Sands (by mass) Poorly (by mass) Poorly Graded >4 Soil Group Sands (by mass) Poorly (by mass) Caded >4 Soil Group Sands (by mass) Poorly (by mass) <6	Solid STOD STOD STOD STOP STOP STOP STOP STOP STOP STOP STOP	Solid Group Carvella (12%)	Soli Type of Soli Laboratory Type of Soli Poorty Graded 24 10 23 Soli use Brance m/a m/a m/a m/a Soli use Brance use Brance m/a m/a Soli use Brance use Brance	Soli Oracle (arrowshi) (arrowshi) (b to static (arrowshi) (b to static) (b to static) (b to static) (c to to (arrowshi) (c to static) (c to s	Solid Group Type of Boll Laboratory (Well Graded) Description (Melling) Solid (Melling) Open to (Melling) Description (Melling) Open to (Melling) Open to (Melling)								

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY Classified b plasticity		<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.,</i> SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²				
Term	SPT 'N' (blows/0.3m) ¹			
Very Loose	0 to 4			
Loose	4 to 10			
Compact	10 to 30			
Dense	30 to 50			
Very Dense	>50			

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.
	Dry Moist

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test ¹
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

	COHESIVE SOILS			
Consistency				
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)		
Very Soft	<12	0 to 2		
Soft	12 to 25	2 to 4		
Firm	25 to 50	4 to 8		
Stiff	50 to 100	8 to 15		
Very Stiff	100 to 200	15 to 30		
Hard	>200	>30		

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

Water Content					
Term	Description				
w < PL	Material is estimated to be drier than the Plastic Limit.				
w ~ PL	Material is estimated to be close to the Plastic Limit.				
w > PL	Material is estimated to be wetter than the Plastic Limit.				

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _i or LL	liquid limit
ln x	natural logarithm of x	\mathbf{w}_{p} or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	I _p or PI	plasticity index = (w _l – w _p)
g	acceleration due to gravity	NP	non-plastic
t	time	Ws IL	shrinkage limit liquidity index = (w – w _P) / I _P
		lc	consistency index = $(w - w_p) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
		ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
3	linear strain volumetric strain	q	rate of flow velocity of flow
ε _v	coefficient of viscosity	v i	hydraulic gradient
η υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress	K	(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate,		
	minor)	(c)	Consolidation (one-dimensional)
	mean stress or octahedral stress	Cc	compression index (normally consolidated range)
σoct		Cr	recompression index
τ	= $(\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress	O,	(over-consolidated range)
ů	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Τv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ͽ OCR	pre-consolidation stress
(a)	Index Properties bulk density (bulk unit weight)*	UCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω) ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρ(γ.) ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ΄ δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio	p p'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	porosity degree of saturation	p′ q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
U		ч qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dowei	the symbol is a limit weight symbol is	Notes: 1	
	ity symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes. 1 2	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

		CT: 19129918 (1000)	RECORD OF BOREHOLE: BH20	J-1 SHEET 1 OF 2
LO	CATI	ON: See Figure 2	BORING DATE: March 19, 2020	DATUM: Geodetic
SP	T/DC	CPT HAMMER: MASS, 63kg; DROP, 760mm		HAMMER TYPE: AUTOMATIC
METRES	BORING METHOD	SOIL PROFILE	ELEV.	DRAULIC CONDUCTIVITY, k, cm/s 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp I OW WI
_	В	GROUND SURFACE	0 20 40 60 80 142.90	10 20 30 40
0		ASPHALT (~130 mm thick) FILL - (SP/GP) SAND and GRAVEL,	142.90 0.00 0.13	Concrete
		some fines; brown; non-cohesive, moist (CL) SILTY CLAY, some sand, trace gravel; brown (TILL); oxidation stains; cohesive, w <pl, stiff<="" td="" very=""><td>142.47 0.43 1 SS 12</td><td>50 mm Disputs</td></pl,>	142.47 0.43 1 SS 12	50 mm Disputs
1		(ML) sandy SILT, trace gravel; brown to grey (TILL); non-cohesive, moist, dense to very dense	2 SS 18 141.53 1.37	Monitoring Well
2			3 SS 30 4 SS 57	\circ
3		- Becomes grey at a depth of about	5 SS 50/ 0.1	0
4		3.3 m (CL-ML) SILTY CLAY to CLAYEY SILT.	<u>138.96</u> 3.94	
5	CME 75 Truck Mounted Rig 140 mm Solid Stem Augers	trace sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td>6 SS 46</td><td>Bentonite Seal June 16, 2020</td></pl,>	6 SS 46	Bentonite Seal June 16, 2020
6	CME 75 140 mm	(ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense	137.34 5.56 7 SS 50/ 0.13	o
7			8 SS 50/ 0.13	
8		(CL-ML) SILTY CLAY to CLAYEY SILT, trace sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td>134.37 8.53</td><td>Sand</td></pl,>	134.37 8.53	Sand
0			9 SS 50/ 0.07	O Silica Sand Filter and Screen
		CONTINUED NEXT PAGE		

		OJECT: 19129918 (1000) RECORD OF BOREHOLE: BH20-1									SHEET 2 OF 2			
	LOCATION: See Figure 2 BORING DATE: March 19, 2020 DATUM: Geodetic													
	SP	T/DCF	PT HAMMER: MASS, 63kg; DROP, 760mm				-						MER T	YPE: AUTOMATIC
Ш		DOH.	SOIL PROFILE		SAMPL		DYNAMIC PENETRA RESISTANCE, BLOV	TION /S/0.3m	∖ HY⊑ ∖	DRAULIC Co k, cm/s	ONDUCTIVITY	' T	NG	PIEZOMETER
'H SC/	METRES	BORING METHOD	DESCRIPTION PERSON	ELEV.	RER R	BLOWS/0.3m	20 40 SHEAR STRENGTH	60 80 nat V. + 0			0 ⁻⁵ 10 ⁻⁴	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
DEPT	M	ORIN	DESCRIPTION 4	DEPTH (m)	NUMBER	FOWS	Cu, kPa	rem V. ⊕ 1		Wp I			ADD LAB.	INSTALLATION
_		ш	نم CONTINUED FROM PREVIOUS PAGE			-	20 40	60 80		10 2	0 30	40		
Ē	10		(SM) SILTY SAND, some gravel; grey; non-cohesive, moist, very dense	10.00										
-														
E				132.16 10.74 4	IOA SS	50/ 0.13				00				
Ē	11		(CL-ML) SILTY CLAY to CLAYEY SILT, some sand, some gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td>10.74 4</td><td>IOB CC</td><td>0.13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Silica Sand Filter</td></pl,>	10.74 4	IOB CC	0.13								Silica Sand Filter
E			conesive, w <pl, hard<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>and Screen</td></pl,>											and Screen
-			(ML) sandy SILT, some gravel; grey	131.39										
-			(TILL); non-cohesive, moist, very dense											
E	12													
E				14.	11 SS	50/ 0.05				c				
F														-
				4. 129.92										-
2	13	ted Rig Augers	(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey	12.98										-
- -		CME 75 Truck Mounted Rig 140 mm Solid Stem Augers	(TILL); cohesive, w <pl, hard<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>											-
		5 Truc n Solid			12 SS	50/								-
	14	CME 7 140 mr			12 55	0.07								-
D.000														
jĘ														Cave/Bentonite
														-
	15													-
					13 SS	50/ 0.13				0				-
														-
	16													
														-
- - -														-
-	17				14 SS	50/ 0.05				0				
	"		END OF BOREHOLE	16.97										-
č L			1. Borehole caved at a depth of about											-
			11.3 mbgs upon completion of drilling.											-
	18		2. Groundwater level measured in monitoring well as follows:											-
			Date Depth(m) Elev. (m) 13/05/2020 4.4 138.5											
			21/05/2020 4.4 138.5 05/06/2020 4.4 138.5											-
			16/06/2020 4.4 138.5											
	19													-
Ē														-
	20													
5	-0													
		ртн ч	SCALE	· · · ·										DGGED: AD/SS
	1:						S GOL	DER						ECKED: RA

PROJECT:	19129918 (1000)
LOCATION:	See Figure 2

RECORD OF BOREHOLE: BH20-2

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: March 19 to 24, 2020

HAMMER TYPE: AUTOMATIC

		-	HAMMER: MASS, 63kg; DROP, 760mm SOIL PROFILE			SAM	MPLI	ES	DYNAMIC PENETR	ATION	<u>۱</u>	HYDRA			TIVITY,		_	TYPE: AUTOMATIC
METRES	BORING METHOD	┢		0T					RESISTANCE, BLO 20 40	WS/0.3m 60	80	10	k, cm/s) ⁻⁶ 1(0-4	10 ⁻³		PIEZOMETER OR
ETR	IG ME		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH	Inat V	+ Q- ●		ATER C	DNTEN	Г PERC			
ĮΣ	ORIN		DESCRIPTION	RAT	DEPTH (m)	NUN	2	NO-	Cu, kPa	rem V. 6	€U-Ō	Wp		W		- WI	ADI	
	ă	+		ST	(11)			Ы	20 40	60	80	1	0 2		30	40	-	
0		_ I	GROUND SURFACE		144.00										<u> </u>			12.3
		Γ	ASPHALT (~130mm thick) FILL - (SP/GP) SAND and GRAVEL,	***	0.00 0.13										1			Concrete
			some fines; brown; non-cohesive, moist, loose		143.64 0.36	1	ss	6				0						VOLCE
		Ľ	(CL) SILTY CLAY, some sand, trace					Ũ										
			gravel; brown (TILL); oxidation stains, cohesive, w <pl, firm="" stiff<="" td="" to=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>															
1		Iders				2	ss	10					0					50 mm Diameter Monitoring Well
	ŀ	Stem Augers																······································
	i	∛ ≥	(ML) sandy SILT, trace gravel; brown		142.63 1.37													
	:	Ē	(TILL), oxidation stains; non-cohesive, moist, very dense															
	!	i.				3	SS	65				0						
2		140 mm I.D.			1	\vdash									1			
		÷			1										1			
						4	ss	50/ 0.07				0			1			
															1			📕
															1			
3	┝	_				5	ss	50/			1	0						
					1	Ħ		υ.13			1							
					1										1			
					1										1			
		┝	(CL) SILTY CLAY, some sand, trace		140.11 3.89						1							June 16, 2020
4			gravel; grey (TILL); cohesive, w <pl, hard</pl, 		5.00										1			
			naru		1										1			
	Rig			6		Ш									1			
	untea					6	ss	42			1		0					
5	CME 75 Truck Mounted Rig				1	Ľ		72					<u> </u>		1			📕
Ĭ	5 Truc														1			Bentonite Seal
	ME 7														1			
	0	\vdash	(SM) SILTY SAND, some gravel; grey;	FFF	138.44 5.56										1			
		_ I	non-cohesive, moist, very dense												1			
6		Mud Rotary Drilling													1			
		Rotar			1						1		_					
		Mud			1	7	SS	80					0		1		м	
						\vdash									1			
	li	Dia Tricone													1			
7		۶L			136.91										1			
			(ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense		7.09										1			
															1			
					1	\vdash									1			
						8	ss	56			1	0						
8						\vdash					1							
															1			
					1										1			
											1							
0											1							
9						\vdash									1			
						9	ss	54			1	0						
															1			
					1						1							
10		_			1	$\lfloor \downarrow$	- –	_			-				.	.+-	_	_ �
			CONTINUED NEXT PAGE															
	סדו		CALE															LOGGED: AD/SS
		130							GOL	DE	R							
1:5									GOL	DE	к							CHECKED: RA

			T: 19129918 (1000) N: See Figure 2		REC	OR	D	OF BO	OREH	OLE:	BI	H20-2				HEET 2 OF 2
			-				BOR	ING DATE	E: March 19	to 24, 20)20					ATUM: Geodetic
	-		PT HAMMER: MASS, 63kg; DROP, 760mm					DYNAMI		ION	<u> </u>	HYDRAULIC			IMER T	YPE: AUTOMATIC
DEPTH SCALE METRES		BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER TYPE	Зт	RESISTA 20	ANCE, BLOW	S/0.3m 60 nat V. + rem V. €	30 Q - ● U - ○	k, cm/ 10 ⁻⁶	10 ⁻⁵ 10 ⁻⁴ CONTENT PE <u>0</u> 20 30	10-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 1	0 -	-	CONTINUED FROM PREVIOUS PAGE													
	1 1 2 3 3 00 00 00 00 00 00 00 00 00 00 00 00	UME. / 3 TUCK MOUTINED FKg 98 mm Dia Tricone - Mud Rotary Drilling	CONTINUED FROM PREVIOUS PAGE (ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense (CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace to some gravel; grey (TILL); cohesive, w <pl, hard END OF BOREHOLE NOTE: 1. Groundwater level measured in monitoring well as follows: Date Depth(m) Elev. (m) 13/05/2020 3.5 140.5 21/05/2020 3.7 140.3 END OF 2020 3.7 140.3</pl, 		<u>132.34</u> 11.66	10 SS 11 SS 12 SS 13 SS 14 SS	50/ 0.1 50/									Sand Silica Sand Filter and Screen
			CALE													DGGED: AD/SS
ł)EP : 5						ľ		GOL	DE	R					ECKED: RA

_		PT HAMMER: MASS, 63kg; DROP, 760mm SOIL PROFILE			SA	MPL	ES	DYNAMIC PE RESISTANCE		ON /0.3m)		ULIC CON k, cm/s	DUCTIVII		-	
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 I SHEAR STRE Cu, kPa	40 6 NGTH I	50 8	Q - ● U - O	10	6 10 ⁻⁵	10 ⁻⁴ TENT PE O^W 30	10 ⁻³ RCENT 		PIEZOMETE OR STANDPIPE INSTALLATIO
0		GROUND SURFACE ASPHALT (~130 mm thick) FILL - (SP/GP) SAND and GRAVEL, trace fines; brown; non-cohesive, moist, compact		145.80 0.00 0.13		SS	23					0					Concrete
1	Stem Augers	(ML) sandy SILT, trace gravel; brown		145.06 0.74		SS	18					c	>				50 mm Diameter Monitoring Well
2	140 mm I.D. Hollow St		<u> </u>		3	SS	37					0					
	÷		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	142.90	4	SS	44					0					
3		(CL-ML) SILTY CLAY to CLAYEY SILT, some sand, trace gravel; grey (TILL); cohesive, w <pl, cohesive,="" hard<="" td="" w<pl,=""><td></td><td>2.90</td><td>5</td><td>SS</td><td>31</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></pl,>		2.90	5	SS	31					0					
CME 75 Truck Mounted Bin				140.24		SS	30					0					Bentonite Seal June 16, 2020
6	98 mm Dia Tricone - Mud Rotary Drilling		<u>۵۵ ۵۵ ۵۶ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵</u> ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵	5.56	7	SS	31					0					
3		(ML) sandy SILT, grey; non-cohesive, wet, very dense		137.88 7.92		SS	76					C	, 0				
9		(ML) SILT, trace to some sand, trace gravel; grey; slight plasticity; non-cohesive, moist, dense		137.19 8.61	9	SS	40						0				Sand
0								+							_+-		Silica Sand Filter and Screen

		T: 19129918 (1000)		REC	OF	RD	0	BOR	EHC	DLE:	Bl	H20-	3				Sł	HEET 2 OF 2	
LO	CATIC	N: See Figure 2				BC	RIN	DATE: Ma	ırch 27,	2020							D	ATUM: Geodetic	
SP		PT HAMMER: MASS, 63kg; DROP, 760mm														HAMI		YPE: AUTOMATIC	
sЧЕ	ГНОВ	SOIL PROFILE	F	1	SAN		F	YNAMIC PEN ESISTANCE,	BLOWS	/0.3m	ζ.		k, cm/s			. [ING	PIEZOMETER	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE		HEAR STREN u, kPa	IGTH	⊥ nat V. + rem V. ⊕	U- O	W. Wr	• 	DNTENT	PERCE	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION	
- 10		CONTINUED FROM PREVIOUS PAGE	S			-		20 4	0 0	50 8	0	1	0 2	0 3	0 4	10			
- - - - - - - - - - - - - - - - - - -		(ML) SILT, trace to some sand, trace gravel; grey; slight plasticity; non-cohesive, moist, dense			10	ss :	8						0					Silica Sand Filter	<u> </u>
	nted Rig Rotary Drilling	(ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense	<u> </u>	134.14 11.66		55 0 ⁵	0/ 13						0					and Screen	<u> </u>
	CME 75 Truck Mounted Rig 98 mm Dia Tricone - Mud Rotary Drilling	(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td></td><td><u>131.86</u> 13.94</td><td>12A 12B 13</td><td></td><td>1/ 25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Bentonite</td><td></td></pl,>		<u>131.86</u> 13.94	12A 12B 13		1/ 25											Bentonite	
		END OF BOREHOLE NOTE: 1. Groundwater level measured in monitoring well as follows: Date Depth(m) 13/05/2020 4.5 141.3 21/05/2020 4.5 141.3 05/06/2020 4.5 141.3 16/06/2020 4.5 141.3		<u>128.91</u> 16.89	14 :	55 0	0/					0							
		SCALE				ļ		; GO) E F	२							OGGED: AD/SS IECKED: RA	

PROJECT:	19129918 (1000)
LOCATION:	See Figure 2

RECORD OF BOREHOLE: BH20-4

BORING DATE: March 25, 2020

SHEET 1 OF 2 DATUM: Geodetic

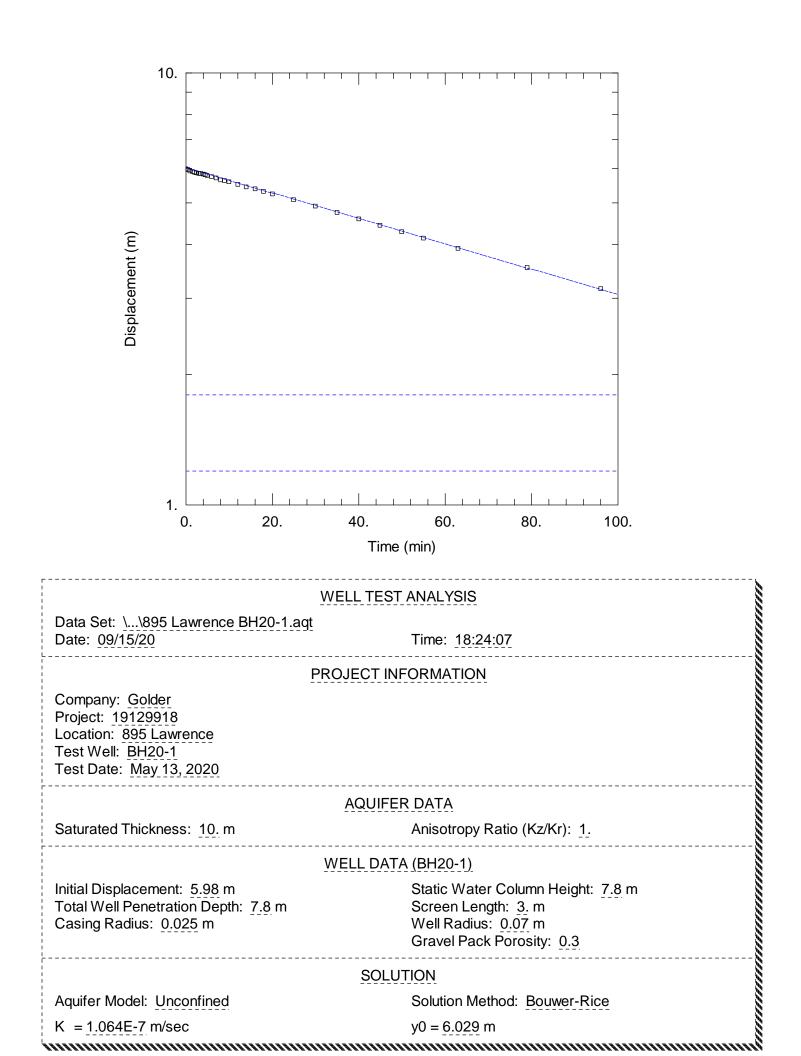
HAMMER TYPE: AUTOMATIC

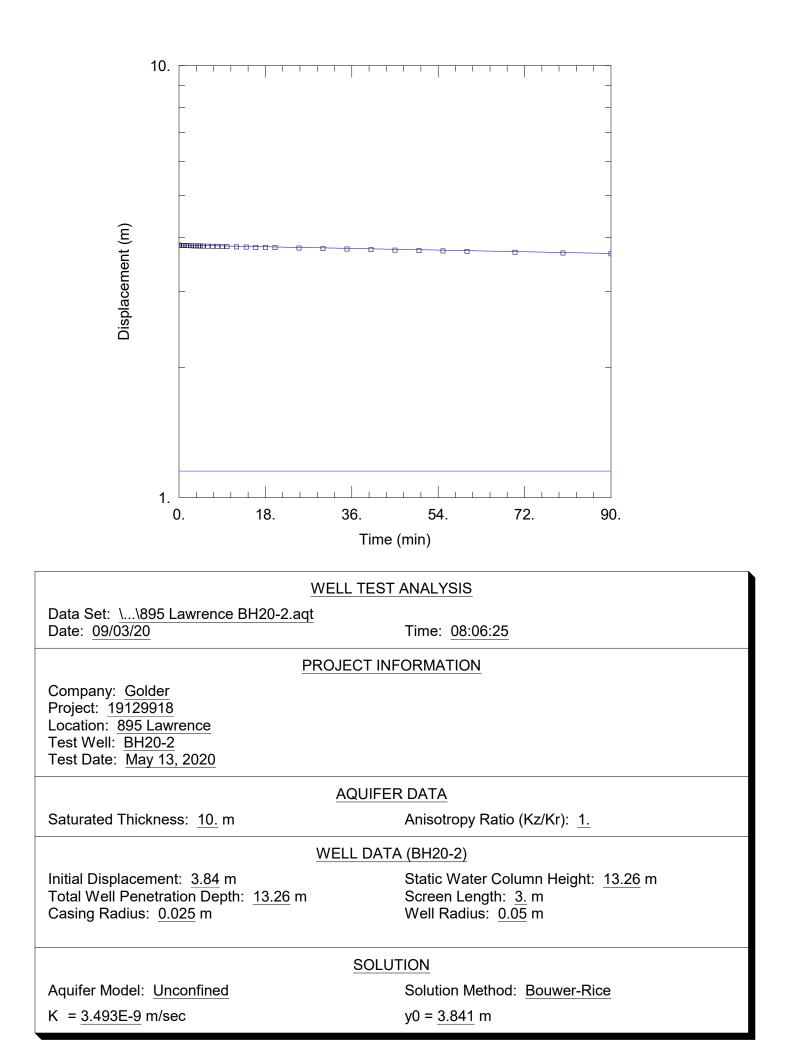
SPT/DCPT HAMMER: MASS, 63kg; DROP, 760mm

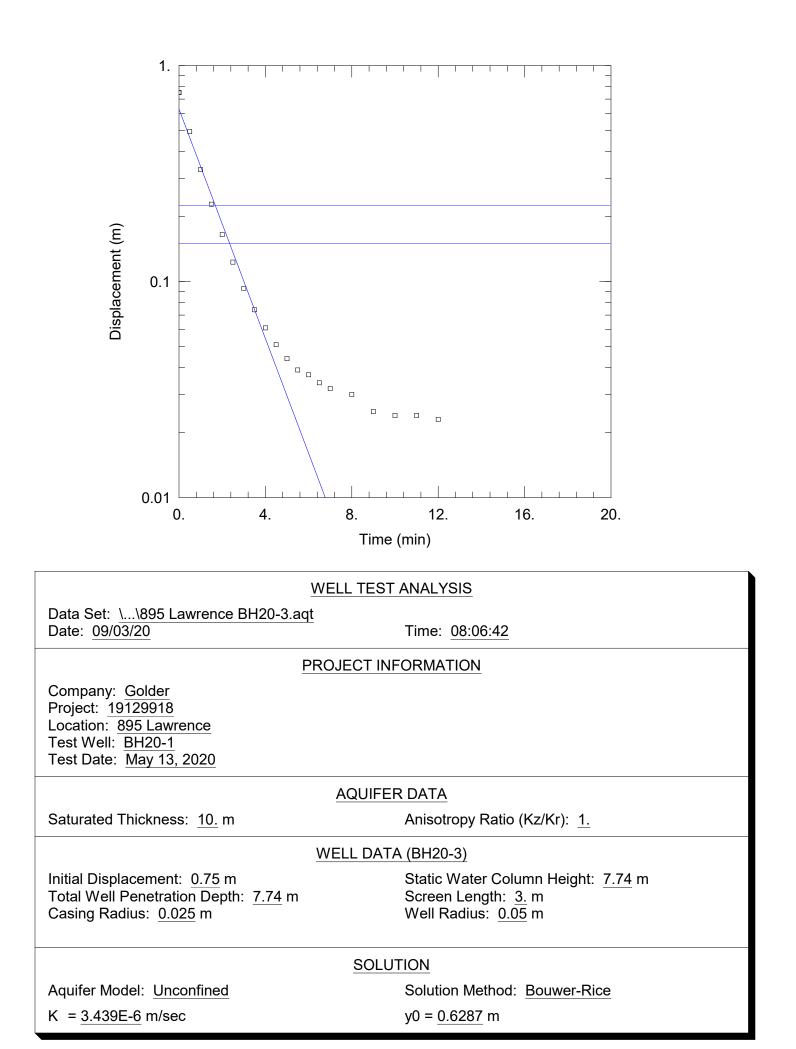
ŗ	DO		SOIL PROFILE			SAI	MPLE	DYNAMIC RESISTAN	PENETRA CE, BLOW	TION /S/0.3m	<u>\</u>	HYDRA	ULIC C k, cm/s	ONDUCT	IVITY,	T	. U	
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	20 SHEAR ST Cu, kPa	40 I RENGTH	60 nat V. – rem V. (€U-O	Wp	n ⁶ 1 ATER C	0 ⁻⁵ 10 ONTENT	PERCE	WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		_	D SURFACE	io I	143.60	\vdash		20	40	60	80	1) 2	20 3	0	40		
0			LT (~130 mm thick) SP/GP) SAND and GRAVEL,		0.00													Concrete
		some fil loose FILL - (I gravel; l cohesiv	nes; brown; non-cohesive, moist, ML) sandy CLAYEY SILT, trace black, trace organic matter; e, w~PL, stiff		143.22 0.38	1	SS						0					
1	Ctom Attended	(ML) sa (TILL), o moist, c	ndy SILT, trace gravel; brown oxidation stains; non-cohesive, sompact to very dense	<u>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u>	0.99	2	SS 1						C					50 mm Diameter Monitoring Well
2	140 mm LD Holl			47444444 47444444444444444444444444444		3	SS 3					0						
				<u> </u>		4	SS 5	3				c	I					
3	-	(CL-ML some sa) SILTY CLAY to CLAYEY SILT, and, trace gravel; grey (TILL); e, w <pl, stiff<="" td="" very=""><td></td><td>140.70 2.90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		140.70 2.90													
		cohesiv	e, w≺PL, very stiff			5	SS 2	5					D					 June 16, 2020
4	ß	(ML) sa (TILL); r very der	ndy SILT, some gravel; grey non-cohesive, moist, dense to nse		139.56 4.04													Bentonite Seal
5	CME 75 Truck Mounted Rig			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6	SS 4	3				0						
6	Mud Botton Dulling	d Kotary Unimg		*********		7	ss 6	,				0						
7	00 mm Dia Trianna M			A & A & A & A & A & A & A & A & A & A &														
8		- Grave 7.6 m a	lly between the depths of about nd 7.9 m	7 9 4 8 9 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8	ss 50	V 1				0						
9		(SM) SI non-coh	LTY SAND, some gravel; grey; resive, wet, very dense	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	135.07 8.53													Sand
						9	SS 7						С	,				Silica Sand Filter and Screen
10			CONTINUED NEXT PAGE		<u> </u>					+						<u>+</u>		
DEF	ΡТН	SCALE					Í	🖒 G	OL	DE	R						L	OGGED: AD/SS

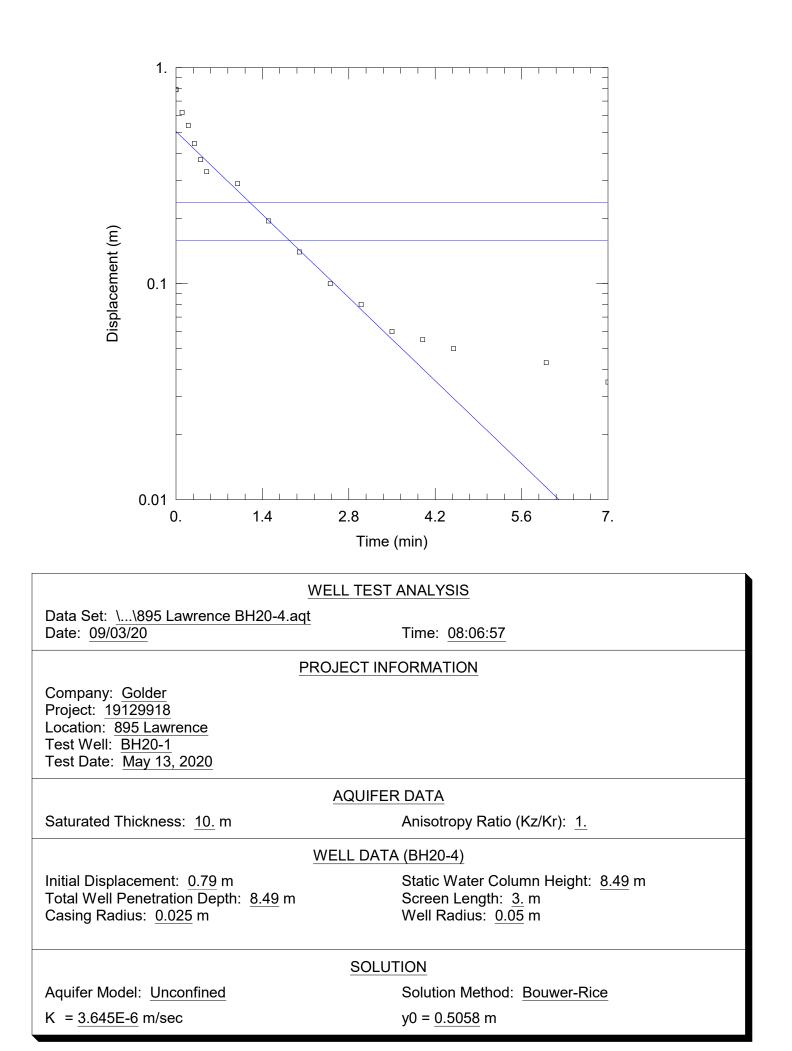
		CT: 19129918 (1000)	REC	ORI		OF BOREHOLE: B	H20-4		HEET 2 OF 2
L	OCAI	ION: See Figure 2		E	ORI	NG DATE: March 25, 2020		D	ATUM: Geodetic
	_	CPT HAMMER: MASS, 63kg; DROP, 760mm					HA HYDRAULIC CONDUCTIVITY,	MMER T	YPE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	ELEV. (m)	NUMBER TYPE	BLOWS/0.3m	20 40 60 80 20 40 60 80 SHEAR STRENGTH nat V. + Q Q. 0 0 20 40 60 80 20 40 60 80	k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 10	,	CONTINUED FROM PREVIOUS PAGE	133.47					1	
- - - - - - - - - - - - - - - - - - -		(ML) sandy SILT, some gravel; grey (TILL); non-cohesive, moist to wet, very dense (CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" th=""><th></th><th>10 SS</th><th>50/ 0.13</th><th></th><th>0</th><th></th><th>Silica Sand Filter and Screen</th></pl,>		10 SS	50/ 0.13		0		Silica Sand Filter and Screen
LAWERENCE AVE E 895.GPJ GALMIS GIJ 6/18/20 11111 111111111111111111111111111111	CME 75 Truck Mounted Rig	so minute a mode - was roady coming		11 SS 12 SS	50/ 0.07 50/ 0.13		o o		Bentonite
2		END OF BOREHOLE NOTE:	126.43 177.17		50/ 0.13 98/ 0.25		0		
)	1. Groundwater level measured in monitoring well as follows: Date Depth(m) Elev. (m) 13/05/2020 3.3 140.3 21/05/2020 3.3 140.3 05/06/2020 3.3 140.3 16/06/2020 3.3 140.3							
00 SH8-D 1	EPTH : 50	SCALE				GOLDER			DGGED: AD/SS IECKED: RA

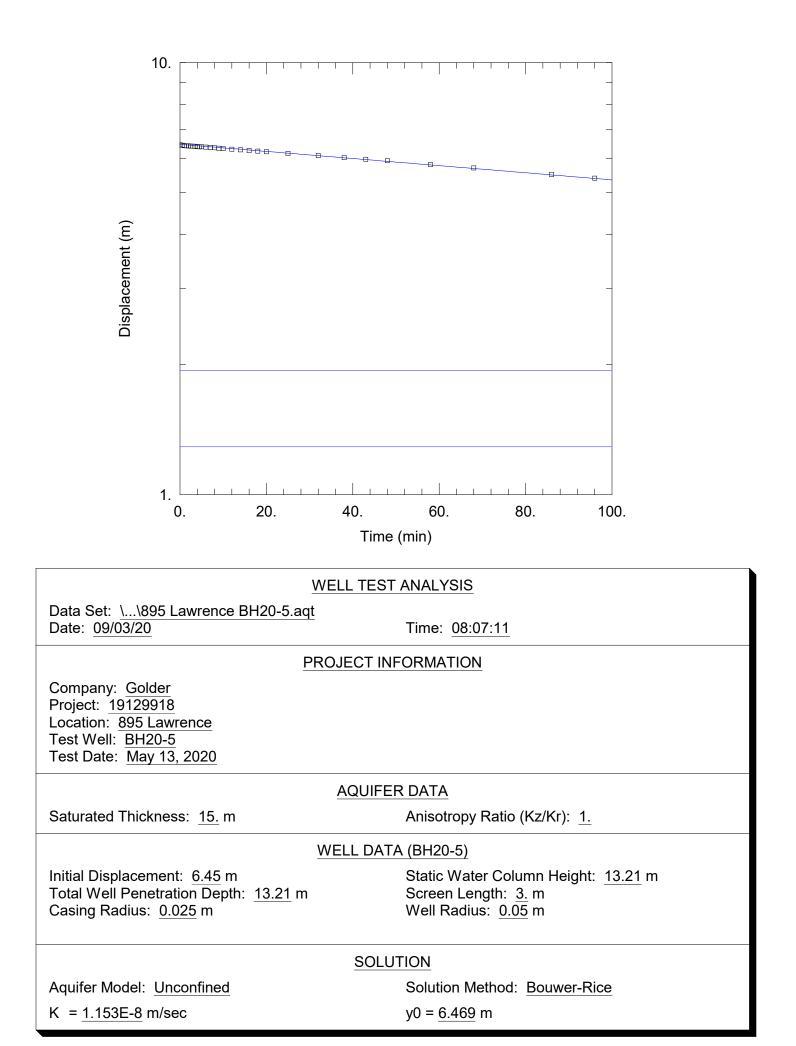
SPT	/DC	CPT HAMMER: MASS, 63kg; DROP, 760mn	ı			BO					HAMMER	TYPE: AUTOMATIC
	ДŎ	SOIL PROFILE			SAN	PLES	DYNAMIC PENETR RESISTANCE, BLC	ATION \ WS/0.3m \	HYDR	AULIC CONDUCTIV k, cm/s	^{πΥ,} Τ_υ	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	I Y PE BI OMS/0 3m	20 40 I I SHEAR STRENGTH Cu, kPa 20 40	60 80 1 nat V. + Q - 0 rem V. ⊕ U - 0 60 80	S w	0 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ VATER CONTENT PI p		PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE ASPHALT (~130 mm thick)		144.60 0.00								e
		FILL - (SP/GP) SAND and GRAVEL, some fines; brown; non-cohesive, moist,		0.13		SS 2						Concrete
1	Aurers	Compact (ML) sandy SILT, trace to some gravel; brown (TILL), oxidation stains, non-cohesive, moist, compact to very dense	<u> </u>			s 2						50 mm Diameter Monitoring Well
	mm I D. Hollow Stem	dense Internet of the second s	* * * * * * * *		3 5	SS 6			0			
2	140 r	- Boulders encountered between the depths of about 2.2 m and 2.3 m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	141.86	4 \$	ss 10)/ 5		0			
3	_	(SM/ML) SILTY SAND to sandy SILT, trace to some gravel; brown to grey; non-cohesive, moist to wet, dense to very dense		2.74	5 \$	5S 44	8			0		
4	CME 75 Truck Mounted Rig				6 5	85 0.2	/ 8			0		June 16, 2020
6	lia Tricone - Mud Rotary Drilling	Particular The control of the contr			7 5	ss 0.7	3			0		
7	08 mm	- Grey at a depth of about 7.0 m										
8		- Gravelly seam between the depths of about 7.6 m and 7.8 m			8 \$	50 0.7	/ 3			0	м	
9		(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td></td><td>136.07 8.53</td><td>9</td><td>ss 0.7</td><td>3</td><td></td><td>c</td><td></td><td></td><td></td></pl,>		136.07 8.53	9	ss 0.7	3		c			
10		CONTINUED NEXT PAGE			-+			-+	.+		+	


		ECT: 19129918 (1000)	REC	OR	DO	OF BOREHOLE:	BH20-5	S	HEET 2 OF 2
LC	DCAT	ION: See Figure 2			BOR	ING DATE: March 26, 2020		D	ATUM: Geodetic
SF	PT/DO	CPT HAMMER: MASS, 63kg; DROP, 760mm				r		HAMMER T	YPE: AUTOMATIC
ш Л	DOH.	SOIL PROFILE		SAMP	1	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	T J S	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT ETEATA (m) (m)	NUMBER TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + C Cu, kPa rem V. ⊕ U 20 40 60 80	2 - ● WATER CONTENT PERCENT Wp ← ───────────────────────────────────	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10	_	CONTINUED FROM PREVIOUS PAGE							
GTA-BHS 001 S/CLIENTSF/RST CAPITALTORONTO LAWERENCE AVE E 895.02 DATA/GINTTORONTO LAWERENCE AVE E 895.05U GALMIS.GOT 6/18/20 1 0 07 01 01 01 01 01 01 01 01 01 01 01 01 01	CME 75 Truck Mounted Rig	(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" th=""><th></th><th>10 SS 11 SS 12 SS 13 SS</th><th>50/ 0.13 50/ 0.05</th><th></th><th></th><th></th><th>Bentonite Seal</th></pl,>		10 SS 11 SS 12 SS 13 SS	50/ 0.13 50/ 0.05				Bentonite Seal
S:(CLIENTS/FIRST_CAPITAL/TO)									
DI A-BHS 001	EPTH : 50	I SCALE		<u> </u>		GOLDER			 OGGED: AD/SS IECKED: RA


July 13, 2022


19129918


APPENDIX D


K-Tests

APPENDIX E

Laboratory Data

CLIENT NAME: GOLDER ASSOCIATES LTD. **100 SCOTIA COURT** WHITBY, ON L1N8Y6 (905) 723-2727 **ATTENTION TO: Aaron Beard** PROJECT: 19129918 AGAT WORK ORDER: 22T913504 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager DATE REPORTED: Jul 13, 2022 PAGES (INCLUDING COVER): 14 VERSION*: 3

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes
VERSION 3: Version 3 supersedes work order 22T913504, Version 2, issued July 12, 2022. Filtered samples removed.
Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V3)

Nember of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

E. Coli (Using MI Agar)

	SA	MPLE DES	CRIPTION:	21-3
		SAM	PLE TYPE:	Water
		DATE	SAMPLED:	2022-06-27
				13:00
Parameter	Unit	G/S	RDL	4029462
Escherichia coli	CFU/100mL	200		0

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Clty of Toronto Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4029462 Escherichia coli RDL = 1 CFU/100mL.

4023402 Eschenchia con RDE = 1 Cr 0/100mE.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2022-07-13

AGAT WORK ORDER: 22T913504 PROJECT: 19129918

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

DATE RECEIVED: 2022-06-27						DATE REPORTED: 2022-07-13
			SAMPLE DE	SCRIPTION:	21-3	
			SA	MPLE TYPE:	Water	
			DAT	E SAMPLED:	2022-06-27 13:00	
Parameter	Unit	G / S: A	G / S: B	RDL	4029462	
Oil and Grease (animal/vegetable) in water	mg/L	150		0.5	<0.5[<a]< td=""><td></td></a]<>	
Oil and Grease (mineral) in water	mg/L	15		0.5	<0.5[<a]< td=""><td></td></a]<>	
Methylene Chloride	mg/L	2	0.0052	0.0003	<0.0003[<b]< td=""><td></td></b]<>	
trans-1,3-Dichloropropylene	mg/L	0.14	0.0056	0.0003	<0.0003[<b]< td=""><td></td></b]<>	
cis- 1,2-Dichloroethylene	mg/L	4	0.0056	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Chloroform	mg/L	0.04	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Benzene	mg/L	0.01	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Trichloroethylene	mg/L	0.4	0.0076	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Toluene	mg/L	0.016	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Tetrachloroethylene	mg/L	1	0.0044	0.0001	<0.0001[<b]< td=""><td></td></b]<>	
Ethylbenzene	mg/L	0.16	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
1,1,2,2-Tetrachloroethane	mg/L	1.4	0.017	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
1,2-Dichlorobenzene	mg/L	0.05	0.0056	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
1,4-Dichlorobenzene	mg/L	0.08	0.0068	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Xylenes (Total)	mg/L	1.4	0.0044	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
PCBs	mg/L	0.001	0.0004	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Pentachlorophenol	mg/L	0.005	0.002	0.0005	<0.0005[<b]< td=""><td></td></b]<>	
Di-n-butyl phthalate	mg/L	0.08	0.015	0.0005	<0.0005[<b]< td=""><td></td></b]<>	
3,3'-Dichlorobenzidine	mg/L	0.002	0.0008	0.0001	<0.0001[<b]< td=""><td></td></b]<>	
Bis(2-Ethylhexyl)phthalate	mg/L	0.012	0.0088	0.0005	<0.0005[<b]< td=""><td></td></b]<>	
Total PAHs	mg/L	0.005	0.002	0.0003	<0.0003[<b]< td=""><td></td></b]<>	
Nonylphenols	mg/L	0.02	0.001	0.001	<0.001[<b]< td=""><td></td></b]<>	
Nonylphenol Ethoxylates	mg/L	0.2	0.01	0.01	<0.01[<b]< td=""><td></td></b]<>	

Certified By:

teurs

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

Sewer Use - Toronto Sanitary and Combined Sewer Use By-law - Organic

DATE RECEIVED: 2022-06-27	,			DATE REPORTED: 2022-07-13
		SAMPLE DESCRIPTION:	21-3	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2022-06-27 13:00	
Surrogate	Unit	Acceptable Limits	4029462	
Toluene-d8	% Recovery	50-140	98	
4-Bromofluorobenzene	% Recovery	50-140	77	
Decachlorobiphenyl	%	50-140	82	
2,4,6-Tribromophenol	%	50-140	79	
2-Fluorophenol	%	50-140	85	
Chrysene-d12	%	50-140	84	
phenol-d6 surrogate	%	50-140	79	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to City of Toronto Sanitary and Combined Sewers Discharge, B Refers to City of Toronto Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4029462 Oil and Grease animal/vegetable is a calculated parameter. The calculated value is the difference between Total O&G and Mineral O&G.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Note: The result for Benzo(b+j)Flouranthene is the total of the Benzo(b)&(j)Flouranthene isomers because the isomers co-elute on the GC column.

Total PAHs is calculated as sum of Anthracene, Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b+j)fluoranthene, Benzo(b+j)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Dibenz(a, h)anthracene, Dibenzo(a,i)pyrene*, Dibenzo(a,j) Acridine*, 7H-Dibenzo(c,g)carbazole*, Fluoranthene, Indeno(1,2,3-cd)pyrene, Perylene, Phenanthrene and Pyrene. *-not accredited parameters.

Nonviphenols is a calculated parameter. The calculated value is the sum of Nonviphenol (NP) and 4n-Nonviphenol (4n-NP).

Nonylphenol Ethoxylates is a calculated parameter. The calculated value is the sum of Nonylphenol Monoethoxylate (NP1EO) and Nonylphenol Diethoxylate (NP2EO).

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

/	/
Cours	
71 3	
<u> </u>	

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

					BOD5	
DATE RECEIVED: 2022-06-27						DATE REPORTED: 2022-07-13
			SAMPLE DE	SCRIPTION:	21-3	
	SAMPLE TYPE:				Water	
	DATE SAMPLED:			SAMPLED:	2022-06-27 13:00	
Parameter	Unit	G / S: A	G / S: B	RDL	4029462	
Biochemical Oxygen Demand, Total	mg/L	15	300	2	<2[<a]< td=""><td></td></a]<>	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Clty of Toronto Storm Sewer Discharge, B Refers to City of Toronto Sanitary and Combined Sewers Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

Sewer Use - Toronto Sanitary and Combined Sewer Use By-law - Inorganics

SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	Water	
DATE SAMPLED:	2022-06-27	
Parameter Unit G / S: A G / S: B RDL	4029462	
pH pH Units 6.0-11.5 6.0-9.5 NA	7.87	
Fluoride mg/L 10 0.05	<0.05[<a]< td=""><td></td></a]<>	
Total Phosphorus mg/L 10 0.4 0.02	0.05[<b]< td=""><td></td></b]<>	
Cyanide, SAD mg/L 2 0.02 0.002	<0.002[<b]< td=""><td></td></b]<>	
Phenols mg/L 1.0 0.008 0.001	0.005[<b]< td=""><td></td></b]<>	
Chromium VI mg/L 2 0.04 0.002	<0.002[<b]< td=""><td></td></b]<>	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to City of Toronto Sanitary and Combined Sewers Discharge, B Refers to City of Toronto Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22T913504 **PROJECT: 19129918**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

		Sewer Use	e - Toronto	Sanitary an	d Combined Sewer U	Use By-law - Inorganics (Filtered)
DATE RECEIVED: 2022-06-27						DATE REPORTED: 2022-07-13
					21-3 Water 2022-06-27 13:00	
Parameter	Unit	G / S: A	G / S: B	RDL	4029514	
Total Phosphorus	mg/L	10	0.4	0.02	0.02[<b]< td=""><td></td></b]<>	
Total Suspended Solids	mg/L	350	15	10	<10[<b]< td=""><td></td></b]<>	
Total Aluminum	mg/L	50		0.010	<0.010[<a]< td=""><td></td></a]<>	
Total Antimony	mg/L	5		0.020	<0.020[<a]< td=""><td></td></a]<>	
Total Arsenic	mg/L	1	0.02	0.015	<0.015[<b]< td=""><td></td></b]<>	
Fotal Cadmium	mg/L	0.7	0.008	0.005	<0.005[<b]< td=""><td></td></b]<>	
Total Chromium	mg/L	4	0.08	0.020	<0.020[<b]< td=""><td></td></b]<>	
Total Cobalt	mg/L	5		0.010	<0.010[<a]< td=""><td></td></a]<>	
Total Copper	mg/L	2	0.04	0.020	<0.020[<b]< td=""><td></td></b]<>	
Total Lead	mg/L	1	0.12	0.020	<0.020[<b]< td=""><td></td></b]<>	
Total Manganese	mg/L	5	0.05	0.020	<0.020[<b]< td=""><td></td></b]<>	
Total Molybdenum	mg/L	5		0.020	<0.020[<a]< td=""><td></td></a]<>	
Total Nickel	mg/L	2	0.08	0.030	<0.030[<b]< td=""><td></td></b]<>	
Total Selenium	mg/L	1	0.02	0.002	0.003[<b]< td=""><td></td></b]<>	
Total Silver	mg/L	5	0.12	0.020	<0.020[<b]< td=""><td></td></b]<>	
Total Tin	mg/L	5		0.020	<0.020[<a]< td=""><td></td></a]<>	
Total Titanium	mg/L	5		0.010	<0.010[<a]< td=""><td></td></a]<>	
Total Zinc	mg/L	2	0.04	0.020	<0.020[<b]< td=""><td></td></b]<>	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to City of Toronto Sanitary and Combined Sewers Discharge, B Refers to City of Toronto Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

SAMPLING SITE:895 Lawrence Ave E

AGAT WORK ORDER: 22T913504

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

	Microbiology Analysis														
RPT Date: Jul 13, 2022				DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		ld					Value	Lower	Upper	,,	Lower	Upper	1	Lower	Upper
E. Coli (Using MI Agar)															

Escherichia coli 4029410 0 0 NA

Comments: NA - % RPD Not Applicable.

Certified By:

Page 8 of 14

AGAT QUALITY ASSURANCE REPORT (V3)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

SAMPLING SITE:895 Lawrence Ave E

AGAT WORK ORDER: 22T913504 ATTENTION TO: Aaron Beard SAMPLED BY:A. Beard

Trace Organics Analysis

					J		,								
RPT Date: Jul 13, 2022			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	1.10	ptable nits	Recovery		eptable mits
		iù						Lower	Upper		Lower	Upper	r	Lower	Upper
Sewer Use - Toronto Sanitary a	and Combined	l Sewer U	se By-lav	v - Organi	с										
Methylene Chloride	4020287		<0.0003	<0.0003	NA	< 0.0003	105%	50%	140%	102%	60%	130%	87%	50%	140%
trans-1,3-Dichloropropylene	4020287		<0.0003	< 0.0003	NA	< 0.0003	100%	50%	140%	97%	60%	130%	105%	50%	140%
cis- 1,2-Dichloroethylene	4020287		<0.0002	<0.0002	NA	< 0.0002	112%	60%	130%	85%	60%	130%	119%	60%	130%
Chloroform	4020287		<0.0002	<0.0002	NA	< 0.0002	103%	50%	140%	85%	60%	130%	97%	50%	140%
Benzene	4020287		<0.0002	<0.0002	NA	< 0.0002	88%	50%	140%	71%	60%	130%	100%	50%	140%
Trichloroethylene	4020287		<0.0002	<0.0002	NA	< 0.0002	106%	50%	140%	94%	60%	130%	75%	50%	140%
Toluene	4020287		<0.0002	<0.0002	NA	< 0.0002	70%	50%	140%	83%	60%	130%	89%	50%	140%
Tetrachloroethylene	4020287		<0.0001	<0.0001	NA	< 0.0001	75%	50%	140%	73%	60%	130%	100%	50%	140%
Ethylbenzene	4020287		<0.0002	<0.0002	NA	< 0.0002	85%	50%	140%	89%	60%	130%	89%	50%	140%
1,1,2,2-Tetrachloroethane	4020287		<0.0002	<0.0002	NA	< 0.0002	106%	50%	140%	92%	60%	130%	111%	50%	140%
1,2-Dichlorobenzene	4020287		<0.0002	<0.0002	NA	< 0.0002	97%	50%	140%	92%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene	4020287		<0.0002	<0.0002	NA	< 0.0002	98%	50%	140%	92%	60%	130%	101%	50%	140%
PCBs	4038015		< 0.0002	< 0.0002	NA	< 0.0002	104%	50%	140%	98%	50%	140%	77%	50%	140%
Pentachlorophenol	3983715		< 0.0005	< 0.0005	NA	< 0.0005	85%	50%	140%	79%	50%	140%	84%	50%	140%
Di-n-butyl phthalate	3983715		< 0.0005	< 0.0005	NA	< 0.0005	74%	50%	140%	85%	50%	140%	79%	50%	140%
3,3'-Dichlorobenzidine	3983715		< 0.0001	< 0.0001	NA	< 0.0001	79%	30%	130%	89%	30%	130%	86%	30%	130%
Bis(2-Ethylhexyl)phthalate	3983715		< 0.0005	< 0.0005	NA	< 0.0005	85%	50%	140%	78%	50%	140%	85%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

ung

AGAT QUALITY ASSURANCE REPORT (V3)

Page 9 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

...

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

SAMPLING SITE:895 Lawrence Ave E

AGAT WORK ORDER: 22T913504

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

Fluoride 4 Total Phosphorus 4 Cyanide, SAD 4 Phenols 4	Batch Combined 4028923 4036006 4037272	Sample Id	Dup #1	DUPLICAT		Method	REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
Sewer Use - Toronto Sanitary and C pH 4 Fluoride 4 Total Phosphorus 4 Cyanide, SAD 4 Phenols 4	Combined 4028923 4036006	ld		Dup #2		Method							MATRIX SPIKE		
pH4Fluoride4Total Phosphorus4Cyanide, SAD4Phenols4	4028923 4036006				RPD	Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
pH4Fluoride4Total Phosphorus4Cyanide, SAD4Phenols4	4028923 4036006	d Sewer U					value	Lower	Upper	-	Lower	Upper	Lo	Lower	Upper
Fluoride4Total Phosphorus4Cyanide, SAD4Phenols4	4036006		se By-lav	v - Inorgai	nics										
Total Phosphorus4Cyanide, SAD4Phenols4			7.58	7.71	1.7%	NA	101%	90%	110%						
Cyanide, SAD 4 Phenols 4	4037272		<0.05	<0.05	NA	< 0.05	113%	70%	130%	108%	80%	120%	94%	70%	130%
Phenols 4			0.10	0.10	0.0%	< 0.02	99%	70%	130%	98%	80%	120%	NA	70%	130%
	4029462 4	1029462	<0.002	<0.002	NA	< 0.002	102%	70%	130%	105%	80%	120%	106%	70%	130%
	4033548		0.001	<0.001	NA	< 0.001	102%	90%	110%	102%	90%	110%	107%	80%	120%
	4026830		<0.002	<0.002	NA	< 0.002	102%	70%	130%	105%	80%	120%	107%	70%	130%
Sewer Use - Toronto Sanitary and C	Combined	d Sewer U	lse By-lav	v - Inorgai	nics (Filte	ered)									
Total Phosphorus 4	4037272		0.10	0.10	0.0%	< 0.02	99%	70%	130%	98%	80%	120%	NA	70%	130%
Total Suspended Solids 4	4032212		25	24	NA	< 10	102%	80%	120%						
Total Aluminum 4	4029823		0.056	0.051	NA	0.012	109%	70%	130%	101%	80%	120%	116%	70%	130%
Total Antimony 4	4029823		<0.020	<0.020	NA	< 0.020	100%	70%	130%	94%	80%	120%	101%	70%	130%
Total Arsenic 4	4029823		<0.015	<0.015	NA	< 0.015	95%	70%	130%	86%	80%	120%	91%	70%	130%
Total Cadmium 4	4029823		<0.005	<0.005	NA	< 0.005	100%	70%	130%	95%	80%	120%	97%	70%	130%
Total Chromium 4	4029823		<0.020	<0.020	NA	< 0.020	102%	70%	130%	93%	80%	120%	96%	70%	130%
Total Cobalt 4	4029823		<0.010	<0.010	NA	< 0.010	101%	70%	130%	87%	80%	120%	97%	70%	130%
Total Copper 4	4029823		0.024	0.025	NA	< 0.020	102%	70%	130%	91%	80%	120%	95%	70%	130%
Total Lead 4	4029823		<0.020	<0.020	NA	< 0.020	107%	70%	130%	95%	80%	120%	100%	70%	130%
Total Manganese 4	4029823		<0.020	<0.020	NA	< 0.020	101%	70%	130%	89%	80%	120%	98%	70%	130%
Total Molybdenum 4	4029823		0.034	0.039	NA	< 0.020	100%	70%	130%	99%	80%	120%	103%	70%	130%
	4029823		<0.030	<0.030	NA	< 0.030	102%	70%	130%	86%	80%	120%	95%	70%	130%
Total Selenium 4	4029823		<0.002	<0.002	NA	< 0.002	98%	70%	130%	94%	80%	120%	94%	70%	130%
Total Silver 4	4029823		<0.020	<0.020	NA	< 0.020	98%	70%	130%	86%	80%	120%	94%	70%	130%
Total Tin 4	4029823		<0.020	<0.020	NA	< 0.020	101%	70%	130%	92%	80%	120%	99%	70%	130%
Total Titanium 4	4029823		<0.010	<0.010	NA	< 0.010	107%	70%	130%	84%	80%	120%	89%	70%	130%
Total Zinc 4	4029823		<0.020	<0.020	NA	< 0.020	100%	70%	130%	94%	80%	120%	92%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

BOD5

Biochemical Oxygen Demand, Total 4029462 <2 <2 NA <2 88% 70% 130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V3)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Certified By:

Page 10 of 14

Method Summary

CLIENT NAME: GOLDER ASSOCIATE	S LTD.	AGAT WORK ORDER: 22T913504						
PROJECT: 19129918		ATTENTION TO:	Aaron Beard					
SAMPLING SITE:895 Lawrence Ave E		SAMPLED BY:A. Beard						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Microbiology Analysis		•						
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration					

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

AGAT WORK ORDER: 22T913504 ATTENTION TO: Aaron Beard SAMPLING SITE:895 Lawrence Ave E SAMPLED BY:A. Beard PARAMETER LITERATURE REFERENCE ANALYTICAL TECHNIQUE AGAT S.O.P Trace Organics Analysis Oil and Grease (animal/vegetable) in water VOL-91-5011 GRAVIMETRIC EPA SW-846 1664A & SM 5520 GRAVIMETRIC Oil and Grease (mineral) in water VOL-91-5011 EPA SW-846 1664A & SM 5520 modified from EPA 5030B & EPA Methylene Chloride VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA trans-1,3-Dichloropropylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA cis- 1,2-Dichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Chloroform VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Benzene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Trichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Toluene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Tetrachloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA (P&T)GC/MS Ethylbenzene VOL-91-5001 8260D modified from EPA 5030B & EPA (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5001 8260D modified from EPA 5030B & EPA 1,2-Dichlorobenzene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,4-Dichlorobenzene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Xylenes (Total) VOL-91-5001 CALCULATION 8260D modified from EPA 5030B & EPA Toluene-d8 VOL-91- 5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 4-Bromofluorobenzene VOL-91- 5001 (P&T)GC/MS 8260D modified from EPA SW-846 3510C & PCBs ORG-91-5112 GC/ECD 8082A modified from EPA SW846 3510C & ORG-91-5112 GC/ECD Decachlorobiphenyl 8082A modified from EPA 3510C and EPA Pentachlorophenol ORG-91-5114 GC/MS

· ·		8270E	
Di-n-butyl phthalate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
3,3'-Dichlorobenzidine	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Total PAHs	ORG-91-5114	modified from EPA 3510C and EPA 8270E	CALCULATION
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Nonylphenols	ORG-91-5122	modified ASTM D7485-16	CALCULATION

AGAT METHOD SUMMARY (V3)

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

AGAT WORK ORDER: 22T913504

ATTENTION TO: Aaron Beard

SAMPLING	SITE:895	Lawrence	Ave E

SAMPLED BY:A. Beard

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Nonylphenol Ethoxylates	ORG-91-5122	modified ASTM D7485-16	CALCULATION
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Cyanide, SAD	INOR-93-6051	modified from MOECC E3015; SM 4500-CN- A, B, & C	TECHNICON AUTO ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

Chain of Custody Papard	-			-		the St.	Ph: 905_71	ssissau 2.5100 we	iga, Or) Fax: bearth	tario L 905.71 agatia		2 2	Work Cool	Order # er Quant	ity:	27	-9. len	21	50		6
Report Information: Company: Golder WSP Contact: Aaton Beard Address: Job Scotia (rt) Phone: Z26-220-7520 Fax: Reports to be sent to: Aaton Beard 1. Email: Aaton Beard 2. Email: Sted - Ail @ golder com Project Information: Project: Project: 19129918 Site Location: 895 familien (e Aue E)		Reg (Please Ta Ta Soil T Soil T	Base Drinking Water Chain of Custody Form (potable water consumed by humans) Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Excess Soils R406 Tableindicate One Tableindicate One Ind/Com Tableindicate One Res/Park Regulation 558 Agriculture Regulation 558 Soil Texture (check One) CCME Fine CCME Is this submission for a Report Guideline on Certificate of Analysis Yes No						Arrival Temperatures: 505746 Custody Seal Intact: Yes No N/A Notes: 507 Store Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM												
Sampled By: <u>H. i5ew Ok</u> AGAT Quote #: Please note: If quotation number is not pro- Invoice Information: Company: <u>Grad Al</u> Contact: <u>Syed Al</u> Address: <u>Syed Al</u> Email: <u>ioo Stot</u>	Bill	To Same: Yes	-	В	nple Matrix Leg Biota Ground Water Oil Paint Soil Sediment Surface Water	gend	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - CrVI, DHg, DHWSB	F1-F4 PHCs			Disposal Characterization TCLP:	tNs □B(a)P□PCBs	SPLP: L Metals L vocs L svocs	Moisture	Subi-city Townto	-Fille	tot Phosphorus. Filter		Potentially Hazardous or High Concentration (Y/N)
	Date Sampled	Time Sampled		Sample Matrix Giù		ments/ nstructions	Y/N	Metals	Metals	BTEK	PCB	voc	Avodors		SPLP: LJ Met	Corros	X 54	XTSS	X Tai	-	Potenti
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Rame and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):		Date 27/561 Date Date	Time	1:00	Samples Received By (Pr Samples Received By (Pr Samples Received By (Pr	Int Name and Sign):	Ind	2 X	Pi	nk Cop	Dat Dat Dat	e e	ellow Co	Time Time Time	White	 №: ≥ Сору	T -	ge <u>1</u>	of	27 	7:07

GOLDER

golder.com