

Appendix F

Groundwater Information

SERVICING REPORT GROUNDWATER SUMMARY

The form is to be completed by the Professional that prepared the Servicing Report. Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

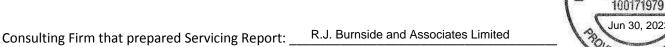
		For City Staff Use Only:		
		Name of ECS Case Manager (please prin	nt)	
		Date Review Summary provided to to TW		
A. SITE INFO	ORMAITON		Included in SR (reference page number)	Report Includes this information City staff (Check)
Date Servicing Report was prepared: July 202	22 (Revised 、	June 2023)	Title Pg	
Title of Servicing Report: Functional Servicing and East	Stormwater M	Ianagement Report - 895 Lawrence Avenue	Title Pg	
Name of Consulting Firm that prepared Servicing R	Report: R.	J. Burnside & Associates Limited	Title Pg	
Site Address	895 Lawrer Toronto, C	nce Avenue East Ontario	Section 1.0 pg 1	
Postal Code	M3C 3L2		Section 1.0 pg 1	
Property Owner (identified on planning request for comments memo)	FCHT Hold	lings (Ontario) Corporation	Section 1.0 pg 1	
Proposed description of the project (ex. number of point towers, number of podiums, etc.)		residential building with two towers, and 17-storey, and one podium.	Section 1.2 Pg 4	
Land Use (ex. commercial, residential, mixed, industrial, institutional) as defined by the Planning Act	Residen	tial	Section 1.2 Pg 4	
Number of below grade levels	Two (2 parking) levels of underground	Section 1.2 Pg 4	

Does the SR include a private water drainage system (PWDS)?			
PWDS: Private Water Drainage System: A subsurface drainage system which may consist of but is not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection or drainage system for disposal in a municipal sewer.	If Yes continue completing Section B (Information Relating to Groundwater) <u>ONLY</u> If Yes, Number of PWDS? 	O YES ✓NO Section 6.2 Pg 31	
B. INFORMATION RELAT	ING TO GROUNDWATER	Included in SR (reference page number)	Report Includes this information City Staff (Check)

Г

If there is more than one sump they must ALL be included in the letters along with a combined flow			
Is it proposed that the groundwater from the	Sanitary Sewer		
development site will be discharged to the			
sanitary, combined or storm sewer?	Combined Sewer	N/A	
	O Storm Sewer		
Will the proposed PWDS discharge from the	○ YES ○ NO		
site go to the Western Beaches Tunnel (WBT)?			
Reference attached WBT drainage map	If Yes, private water discharge fees will apply and site requires a sanitary discharge agreement.		
What is the street name where the receiving			
sewer is located?			
What is the diameter of the receiving sewer?			
Is there capacity in the proposed local sewer system? YES ONO	Are there any improvements required to the sewer system? If yes, identify them below and refer to the section and page number of the FSR where this information can be found.		
	If a sewer upgrade is required, the owner is required to enter into an Agreement with the City to improve the infrastructure? YES		
Total allowable peak flow rate during a 100	L/sec		
year storm event (L/sec) to storm sewer			
When groundwater is to be discharged to the storm sewer the total groundwater and stormwater discharge shall not exceed the permissible peak flow rate during a 2 year pre development storm event, as per the City's			

Wet Weather Flow Management Guidelines, dated 2006			
Short-Term Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario Total Flow (L/sec) = sanitary flow + peak short- term groundwater flow rate	Total Volume (L/day) = 172,000 L/day or 1.99 L/s *Peak short term groundwater flow rate to be limited to below the total sanitary flows, under post-development conditions, to the 300mm sanitary sewer in The Donway West. 	Section 6.3 pg 31-32	
Long-Tem Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario Total Flow (L/sec) = sanitary flow + peak long- term groundwater flow rate	*No Long-Term Groundwater Discharge *Total Flow (L/sec) = (SAN) 8.62 L/s + (GW Pump Rate) 0 L/s = 8.62 L/s L/sec	Section 4.2.2 pg 19	
Does the water quality meet the receiving sewer Bylaw limits? VES NO	If the water quality does not meet the applicable receiving sewer Bylaw limits and the applicant is proposing a treatment system the applicant will need to include a letter stating that a treatment system will be installed and the details of the treatment system will be included in the private water discharge application that will be submitted to TW EM&P.	Section 6.1 pg 31	
C. ON-SITE GROU	NDWATER CONTAINMENT	Included in SR (reference page number)	Report Includes this information City Staff (Check)
How is the site proposing to manage the groundwater discharge on site?		N/A	


Has the above proposal been approved by:	And And And	TW-WIM TW-EM&P ECS		
If the site is proposing a groundwater infiltration gallery, has it been stated that the groundwater infiltration gallery will not be connected to the municipal sewer? A connection between the infiltration gallery/dry	0	YES		
Please be advised if an infiltration gallery/dry			N/A	
well on site is not connected to the municipal sewer, the site <u>must</u> submit two letters using the templates in Schedule B and Schedule C.				
Confirm that the infiltration gallery can infiltrate 100% of the expected peak groundwater flow year round, ensure that the top of the infiltration trench is below the frost line (1.8m depth), not less than 5 m from the building			N/A	
foundation, bottom of the trench 1m above the seasonally high water table, and located so that the drainage is away from the building.				
D. WATER TIGHT	REQU	IREMENTS	Included in SR (reference page number)	Report Includes this information City Staff

SERVICING REPORT GROUNDWATER SUMMARY

			(Check)
If the site is proposing a water tight structure:	Letter by Owner is provided Letter from Mechanical Engineer		
1. The owner must submit a letter using the template in Schedule D.	and Structural Engineer to be provided at subsequent submission	Appendix F	
2. A Professional Engineer (Structural), licensed to practice in Ontar must submit a letter using the template in Schedule E.	io and qualified in the subject		

Provide a copy of the approved SR to Toronto Water Environmental Monitoring & Protection Unit at pwapplication@toronto.ca.

Professional Engineer who completed the report summary:

Print Name

Laura Garner

Professional Engineer who completed the report summary:

Signature

Date & Stamp

GARNEP

Schedule A: Template Letter from Mechanical Consultant confirming peak groundwater flow rate

[Mechanical Consultant Company Letterhead] [Company Name] [Company Address and Contact Information]

[<mark>Date</mark>]

Attention: Executive Director, Engineering and Construction Services c/o Manager, Development Engineering [ADDRESS]

cc: General Manager, Toronto Waterc/o Manager, Environmental Monitoring and Protection Unit30 Dee Ave, Toronto ON M9N 1S9

FCHT Holdings (Ontario) Corporation

85 Hanna Ave, Suite 400 Toronto, ON M6K 3S3 Joshua.Butcher@fcr.ca | 416-216-4279

June 28, 2023

Attention: Executive Director, Engineering and Construction Services c/o Manager, Development Engineering 5100 Yonge Street, 4th Floor. Toronto ON M2N 5V7 cc: General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 30 Dee Ave, Toronto ON M9N 1S9

Dear Sir or Madam,

I Joshua Butcher, confirm and undertake that I will construct and maintain all building(s) on the subject lands 895 Lawrence Ave E in a manner which shall be completely watertight below grade and resistant to hydrostatic pressure without any necessity for Private Water Drainage System (subsurface drainage system) consisting of but not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection directly or indirectly or drainage system for disposal directly or indirectly in a municipal sewer.

Joshua Butcher, Senior Director, Development Joshua.butcher@fcr.ca

Signature

I, Joshua Butcher, have the authority to bind the corporation.

SOLDER

REPORT

Hydrogeological Assessment

Proposed Redevelopment of 895 Lawrence Avenue East, North York, Ontario

Submitted to:

First Capital Asset Management (FCAM) LP

85 Hanna Avenue, Suite 400 Toronto, ON M6K 3S3

Attn: Ms. Julie Barnard Development Manager

Submitted by:

Golder Associates Ltd.

351 Steelcase Road West, Units 9-12, Markham, ON L3R 4H9 Canada

+1 905 475 5591

19129918

July 13, 2022

Distribution List

eCopy - First Capital Asset Management (FCAM) LP

eCopy - Golder Associates Ltd.

Table of Contents

1.0	INTR	ODUCTION	4
	1.1	Site and Project Description	4
	1.1.1	Topography and Drainage	4
	1.1.2	Geology and Physiography	4
	1.1.3	Groundwater Use	5
	1.2	Scope of Work	5
2.0	INVE	STIGATION PROCEDURE	6
	2.1	Drilling and Well Installations	6
	2.2	Soil Conditions	6
	2.3	Groundwater Level Measurements	7
	2.4	Hydraulic Conductivity	7
	2.5	Groundwater Quality	7
3.0	DEW	ATERING EVALUATION	7
	3.1	Drawdown Estimate	8
	3.2	Water Taking Needs	8
	3.3	Construction Dewatering Rates	8
	3.4	Long-Term Drainage	9
4.0	ASSE	SSMENT OF POTENTIAL DEWATERING EFFECTS	9
	4.1	Geotechnical Assessment	9
	4.2	Groundwater Resources	10
	4.3	Surface Water Resources	10
5.0	CLOS	SURE	10
REF	EREN	CES	11

TABLES

Table 1: Site Geology	.6
-----------------------	----

APPENDICES

APPENDIX A Important Information and Limitations

APPENDIX B Water Well Database Records

APPENDIX C Borehole Logs

APPENDIX D K-Tests

APPENDIX E Laboratory Data

1.0 INTRODUCTION

Golder Associates Ltd., a Member of WSP, ("Golder") has been retained by First Capital Asset Management LP ("FCAM" or "Client") to provide geotechnical and hydrogeological consulting services in support of the design for the proposed commercial and residential development (the "project") to be located southwest of the intersection of Lawrence Avenue East and The Donway West (the "Site") in Toronto, Ontario, at the location shown on Figure 1. The terms of reference for the consulting services are included in Golder's proposal No. P19129915 dated October 4, 2019. Authorization to proceed with the investigation was obtained in the form of the signed proposal received on February 25, 2020 from FCAM.

This report provides the results of the geotechnical exploration and testing and should be read in conjunction with the *"Important Information and Limitations of This Report"* in Appendix A which forms an integral part of this document. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within eighteen months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

1.1 Site and Project Description

The Site is located at 895 Lawrence Avenue East, North York, Ontario (M3C 3L2), at the southwest corner of the intersection of Lawrence Avenue East and The Donway West in Toronto, Ontario, as shown on Figure 2. The site is bordered on the north by Lawrence Avenue East, on the east and south by The Donway West and on the west by four-storey and one-storey commercial buildings. The Site is currently occupied by a one-storey commercial building in the northwest portion of the Site and a paved parking area and access roads in the remainder of the Site. Based on the topographic survey of the Site, the ground surface generally slopes downward from the west to the east with geodetic elevations ranging from approximately 146 metres (m) to 143 m. Along the western boundary of the Site, a retaining wall about 1 m to 1.5 m high separates the property from the neighbouring property, which is at a higher elevation.

At the time of preparing this report, the conceptual drawings provided by FCAM indicated that the proposed development consist of two towers (22 and 17 storeys) connected by a 6-storey podium. The towers will be for residential use and the podium will be mixed-use commercial and residential. All of the buildings will have a common underground parking structure extending to two levels below grade, which will be approximately 6 m below finished grade.

1.1.1 Topography and Drainage

The ground surface at the Site is relatively flat, with ground surface elevations ranging from approximately 143 metres above sea level (masl) in the east to 146 masl in the west. It is assumed that surface water (i.e., rainfall) at the Site discharges to the municipal sewer system. The closest surface water features to the Site are Willet Creek approximately 1 kilometre (km) to the west, and the Don River approximately 1.1 km to the east.

1.1.2 Geology and Physiography

Physiographic mapping in the area indicates that the Site lies within the physiographic region of southern Ontario known as the South Slope (Chapman and Putnam, 2007). The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till and at depth consists of alternating deposits of dense lacustrine sands and silts

and over consolidated lacustrine clays and clay tills overlying the bedrock. Geological mapping conducted by the Ontario Geological Survey (OGS) indicates that the surficial geology at the Site consists of stone-poor silty sand to sandy silty till (OGS, 2010).

1.1.3 Groundwater Use

It is expected all the properties within 500 m of the Site are connected to the municipal water supply system. A review was conducted of the Ministry of the Environment, Conservation and Parks (MECP) water well database in the vicinity of the Site (Appendix B). The MECP records indicate 52 water well records are located within approximately 500 m of the Site, and all of the records are associated with monitoring wells (i.e., observation wells) completed at depths of between 2 and 6 mbgs. No water supply well records were noted within 200 m of the Site.

1.2 Scope of Work

The scope of work for the hydrogeological investigation consisted of:

- Assessing the local hydrogeological setting of the site based on a review of published information sources, including topographic and geologic mapping, the MECP Water Well Record database and available sitespecific reports;
- Completing a drilling and monitoring well installation program as part of the concurrent geotechnical investigation. Five monitoring wells were installed at the Site;
- Conducting single-well response testing at each monitoring well to estimate the hydraulic conductivity of the material adjacent to the screened intervals;
- Collecting groundwater samples from one of the monitoring wells (plus one QA/QC duplicate sample), for analysis of the City of Toronto sewer use by-law parameters;
- Monitoring groundwater levels at each well on six events over a period of three months (i.e., bi-weekly measurements);
- Assessing adjacent infrastructure and providing comments on potential geotechnical impacts (i.e., settlement) from dewatering on structures within the zone of influence; and,
- Preparing a report summarizing the methods, data and findings of the investigation, including characterization of subsurface conditions based on field findings and a description of the groundwater quality including an assessment of potential groundwater discharge options (i.e., provide a comparison of existing groundwater quality to the sewer discharge limits). The report includes an estimate of short-term dewatering rates for construction purposes and long-term dewatering rates for a permanent sub-grade drainage system based on available designs provided to Golder, an assessment of dewatering impacts to surrounding features, comments on discharge management and comments on the need for water taking permitting from the MECP.

2.0 INVESTIGATION PROCEDURE

2.1 **Drilling and Well Installations**

The combined drilling investigation for this assignment was carried out from March 19 to 27, 2020, during which time five boreholes (designated as BH20-1 to BH20-5) were advanced. The boreholes for the investigation were drilled using a standard truck-mounted CME75 drill rig supplied and operated by DBW Drilling Limited of Ajax, Ontario, subcontracted to Golder. The approximate borehole locations are shown on the Figure 2. The monitoring wells each consisted of a 50-millimetre (mm) diameter PVC riser pipe, with a slotted screen sealed at a selected depth within the borehole. A sand filter pack was placed around the screen, and above the screen the annular space was backfilled to the surface with bentonite. The borehole logs and well completion details are provided in Appendix C.

The field work for this investigation was observed by members of Golder's technical staff, who located the boreholes in the field, arranged for the clearance of underground utilities, observed the borehole drilling, sampling and in situ testing operations, logged the boreholes as well as examined and took custody of the recovered soil samples.

The geodetic ground surface elevations at the borehole locations were determined from elevation references taken from a survey plan provided by FCAM, titled, "Topographic Plan of Part of Blocks B and C, Registered Plan 4545, City of Toronto," prepared by Schaeffer Dzaldov Bennett Ltd., dated June 26, 2013, and as such, the elevations given on the Record of Borehole sheets and referred to herein should be considered to be approximate.

2.2 Soil Conditions

In general, the subsurface conditions encountered at the boreholes consisted of the existing pavement structure underlain by fill, extending to depths ranging from about 0.3 to 1.0 m below the existing ground surface. The native material at the Site generally consisted of interlayered deposits of silty clay, clayey silt, silt and silty sand till. A deeper silty clay/clayey silt unit was noted at the bottom of each borehole. The soil consistency generally varied from hard to very dense. Table 1 (below) summarizes the general geological conditions at the Site based on the results of the drilling program. Figure 3 illustrates the inferred geologic profile at the Site.

Table 1. Site Geology	
Stratigraphic Unit	

Table 1: Site Goolegy

Stratigraphic Unit	Approximate Depth (mbgs)
Fill	0.0 – 1.0
Interlayered silt, silty sand, and silty clay till	0.4 – 14.0
Silty clay/clayey silt till	8.5 – 17.0

The Record of Borehole sheets indicate the subsurface conditions at the borehole locations only. The stratigraphic boundaries shown on the borehole records are inferred from non-continuous sampling, observations of drilling progress as well as results of Standard Penetration Tests and, therefore, typically represent transitions between soil types rather than exact planes of geological/stratigraphic change. Subsurface soil conditions will vary between and beyond the borehole locations.

2.3 Groundwater Level Measurements

Water level measurements for the current investigation were collected at the Site starting in May 2020. Water levels were measured at each location with an electronic water level tape, which was cleaned between well locations. Table A (attached) provides a summary of all available water level measurements, including measurements collected to date as part of the current study.

The depth to groundwater at the Site was found to be at depths ranging from approximately 3.3 m below ground surface (bgs) to 4.5 mbgs. The water levels generally declined on the order of 5 to 10 centimetres (cm) over the period of monitoring between May and July, which is generally consistent with seasonal water level fluctuations over the summer months in southern Ontario. The lateral groundwater flow direction in the shallow overburden is to the east (Figure 2). It is expected that depth to groundwater at the Site will vary both on a seasonal and year over year basis.

2.4 Hydraulic Conductivity

Single-well response testing was carried out by Golder on May 13, 2020 at each of the newly installed monitoring wells. This testing was carried out by rapidly purging a known volume of water from each well with a dedicated disposable bailer and monitoring the subsequent water level recovery.

The Bouwer-Rice (1976) method for unconfined conditions was applied to rising head test data. The data was analyzed using the AQTESOLV for Windows version 4.50 Professional software. The single-well response testing AQTESOLV printouts are provided in Appendix C. The hydraulic conductivity values for the various overburden units ranged from about 1×10^{-8} to 3×10^{-9} m/s in the silty clay till and 1×10^{-7} to 3×10^{-6} m/s in the silty and silty sand (see Table A, attached).

2.5 Groundwater Quality

Groundwater quality samples were collected from monitoring well BH21-3 on June 27, 2022, according to standard environmental practices. The samples were stored on ice following collection, and were delivered to AGAT Laboratories of Mississauga, Ontario for analysis of the parameters stipulated under the City of Toronto Municipal Code, Chapter 681 by-law. The laboratory analytical data sheets are provided in Appendix D. The sampling results indicate that the concentrations of all the parameters stipulated under the by-law were below their respective by-law limit values for both storm and sanitary sewer discharge.

3.0 DEWATERING EVALUATION

Based on the design information currently available the proposed development consist of two towers (22 and 17 storeys) connected by a 6-storey podium. All of the buildings will have a common underground parking structure extending to two levels below grade, which will be approximately 6 m below finished grade. The geotechnical report (Golder, 2020) indicates that the depths for the shallow foundations will be 1 to 2 m below the finished basement floor and suggests the deepest footing base elevation would be approximately 139.1 masl. The highest measured water table elevation at the Site is approximately 141.3 masl (Table A). As such it is expected that placement of the foundations and bottom building slab would be a maximum of 2.2 m below the water table, and in excavation control of groundwater and incident precipitation will be required. Based on the geological profile (Figure 3) it is expected that groundwater inflow would occur primarily from within the uppermost silty sand/sandy silt till.

F or the purpose of determining dewatering rates and the zone of influence (ZOI), Golder has assumed that dewatering will be carried out as follows:

- The groundwater level will be controlled at no more than 0.5 m below the base on the footing levels (i.e., a minimum of 138.6 masl);
- Surface water runoff will be directed away from any open excavation; and,
- Groundwater should be pumped in a manner to prevent loss of ground.

Regardless of the above assumptions, the method of construction dewatering is to be solely determined by the Contractor based on their own assessment of the Site-specific conditions, and likely by their specialist dewatering contractor.

3.1 Drawdown Estimate

The amount of drawdown in the water table will depend on both the depth to groundwater and depth of the required excavations. The measured depth to groundwater was found to vary across the Site, ranging from about 3.3 to 4.6 m bgs, or from about 138.5 to 141.3 masl. As the water level measurements were collected during the late spring it is expected that the recorded measurements are close to the seasonal high water levels for the Site. Excavations for footing installations would run the length of the proposed building. Based on the conceptual drawings provided by the Client the building footprint will be approximately 100 m long from east to west, and 50 m wide from north to south. As shown on Figure 3, the depth to groundwater will vary over the excavation length, gradually dropping from west to east. To provide a conservative estimate of the required drawdown the highest measured groundwater elevation (141.3 masl) was compared to the lowest required water level (138.6 masl), for a maximum required drawdown of 2.8 m.

3.2 Water Taking Needs

In order to estimate the potential dewatering requirements for utility excavation at the Site the dewatering Zone of Influence (ZOI) must be calculated. The ZOI represents the lateral extent of groundwater drawdown in response to potential dewatering. Applying the Sichart and Kyrieleis empirical relationship, the lateral extent of groundwater level drawdown is estimated as follows:

$$R_0 = 3000s \sqrt{K}$$

Where:

 R_0 = distance to zero drawdown (i.e., limit of influence) (m);

s = theoretical drawdown at the excavation wall; and

K = hydraulic conductivity of the material

Using the geometric mean of the measured hydraulic conductivity measurements in the silty and silty sand $(1 \times 10^{-6} \text{ m/s})$ and the estimated maximum required drawdown of 2.8 m, the ZOI, which is taken as the distance to zero drawdown, is calculated to be 8 m.

3.3 Construction Dewatering Rates

To assess potential dewatering rates within the surficial deposits to allow excavation of the proposed building footprint, the steady state dewatering rate is estimated for an unenclosed excavation 100 m long by 50 m wide with a maximum drawdown of 2.8 m. The dewatering rate ("Q") is estimated using a modified version of Jacob's equation for unconfined aquifer conditions:

$$Q = \left[\frac{xK(H^2 - h_w^2)}{2L}\right]$$

Where:

Q = Dewatering rate (m ³ /s)	K = hydraulic conductivity (1 x 10^{-6} m/s)
H = initial groundwater level (2.8 m)	h = final groundwater level (0 m)
x = excavation wall length (300 m)	L = zone of influence, ZOI (8 m)

Based on the above information the steady-state dewatering rate for the full excavation footprint is calculated to be 14 m^3 /day. Assuming a safety factor of two to provide a conservative estimate, the steady dewatering rate is therefore assumed to be 28 m^3 /day.

Additional inflow will occur as a result of pore water storage release from the till material within the ZOI (a soil volume of approximately 1,120 m³ or 112 m³ of pore water (assuming a specific yield of 10%). The rate of this storage release is, in part, dependent on the rate of excavation. In this case, we assume that the overall excavation would be completed within a 14-day period, resulting in an additional 8 m³/day of inflow. Finally, assuming a 30 mm rain event occurs over the excavation area during the higher dewatering rate period, another 150 m³ of water would require removal. Assuming removal of the incident rainfall within one day, an estimated total water taking of 172 m³/day would be required for construction dewatering purposes as part of subsurface construction activities. Management and disposal of groundwater and incident rainfall will be required during construction. Options for disposal typically include off-site trucking and disposal or discharge to the municipal sewer system. A temporary discharge permit would be required if discharge the sewer system is to be implemented.

Based on the above calculations the construction dewatering requirements for subsurface construction activities will be below the 400 m³/day threshold for a Permit to Take Water, and but will be above the 50 m³/day threshold for an Environmental Activity Sector Register (EASR).

3.4 Long-Term Drainage

It is understood that the current design plans include use of a water-tight (i.e., tanked or bath-tubbed) foundation. As such, there will be no long-term post-construction dewatering activities or water taking/discharge at the Site.

4.0 ASSESSMENT OF POTENTIAL DEWATERING EFFECTS

4.1 Geotechnical Assessment

Section 3.2 discusses the lateral extent of the anticipated groundwater drawdown for the proposal excavation due to temporary construction dewatering. The drawdown curve indicates that:

- The drawdown is zero at approximately 8 m from the pumping source in the fill and native deposits;
- For a drawdown of about 1.0 m in the fill and non-cohesive native deposits, the distance from the pumping source is approximately 5 m; and,
- The maximum anticipated drawdown is 2.8 m at the edge of the planned excavation.

For the purpose of this assessment, the predicted zone of influence due to groundwater dewatering will depend on the depth of excavations, lateral extent (width) of the excavations and most importantly the depth and locations of the dewatering well points (if any) from the structures. Lowering of the groundwater table by about 1.0 m at the nearest foundations / structures will result in an increase in effective stress of about 10 kPa. As this is a relatively small increase, the impacts of such groundwater lowering are considered to be negligible at distances beyond 5 m from the pumping source. The maximum drawdown of 2.8 m will result in an increase in effective stress of about 28 kPa and, based on the stratigraphy encountered in the boreholes advanced at the Site, this temporary increase in effective stress is estimated to result in settlements of approximately 4 mm immediately adjacent to the point of groundwater extraction.

A review of the Site indicates that along the western boundary two buildings are located about 5 m away from the property line. Settlements induced by dewatering at a distance of 5 m from the pumping source are estimated to be about 1 mm. Along the north, east and south boundaries, the light poles and signs are located along the sidewalk about 3 m from the property boundary. At a distance of 3 m from the property line, an estimated maximum settlement of only about 2.5 mm would be anticipated at the ground surface. Considering the maximum anticipated settlement and the distances of the adjacent structures, buildings, utilities, electrical poles or signs from the property line, the impacts of the dewatering can be considered to be negligible.

4.2 Groundwater Resources

As noted in Section 1.1.3, no private water wells are located within the immediate vicinity of the Site or within the estimated ZOI, and the entire Site is outside of any wellhead protection area for water quantity or quality. Based on the estimated dewatering requirements and dewatering zone of influence (ZOI) (see Section 3.2) as part of the construction activities, it is not anticipated that temporary dewatering activities pose a risk to any water supply wells.

4.3 Surface Water Resources

Disposal options for diverted water are expected to include off-Site trucking or discharge to the sewer system. No watercourse features are located in close proximity to the Site. Based on the small size of the predicted ZOI, and the temporary nature of dewatering and discharge activities, dewatering activities are not expected to have any effect on surface water features or on the natural environment.

5.0 CLOSURE

We trust that this report is suitable for your current requirements. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Golder Associates Ltd.

David Dillon, P.Geo. *Hydrogeologist*

DD/MAS/sat

Mark A. Swallow, M.A.Sc., P.E., P.Eng. *Geotechnical Engineer VIII, Fellow*

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates-my.sharepoint.com/personal/sttimpano_golder_com/documents/desktop/19129918 fcam rpt 2022'07'13 895 lawrence-finalrev0.docx

REFERENCES

Chapman, L.J., and Putnam, D.F., 2007, *"The Physiography of Southern Ontario"*; 4th Edition, Ontario Geological Survey.

Ontario Geological Survey. 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV.

Table A

Table A Groundwater Level Measurements

Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Stick-up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
BH20-1	12.20	142.90	-0.10	13-May-20	4.30	4.40	138.50	1.0E-07	silty clay/silty sand
				21-May-20	4.29	4.39	138.51		
				5-Jun-20	4.25	4.35	138.55		
				16-Jun-20	4.26	4.36	138.54		
				7-Jul-20	4.31	4.41	138.49		
				22-Jul-20	4.34	4.44	138.46		
BH20-2	17.80	144.00	-0.10	13-May-20	3.44	3.54	140.46	3.5E-09	silty clay/clayey silt till
				21-May-20	3.79	3.89	140.11		
				5-Jun-20	3.68	3.78	140.22		
				16-Jun-20	3.57	3.67	140.33		
				7-Jul-20	3.58	3.68	140.32		
				22-Jul-20	3.57	3.67	140.33		
BH20-3	12.20	145.80	-0.10	13-May-20	4.36	4.46	141.34	3.4E-06	silt
				21-May-20	4.37	4.47	141.33		
				5-Jun-20	4.40	4.50	141.30		
				16-Jun-20	4.38	4.48	141.32		
				7-Jul-20	4.40	4.50	141.30		
				22-Jul-20	4.52	4.62	141.18		
BH20-4	11.70	143.60	-0.10	13-May-20	3.21	3.31	140.29	3.6E-06	silty sand/silt
				21-May-20	3.23	3.33	140.27		
				5-Jun-20	3.24	3.34	140.26		
				16-Jun-20	3.25	3.35	140.25		
				7-Jul-20	3.26	3.36	140.24		
				22-Jul-20	3.26	3.36	140.24		

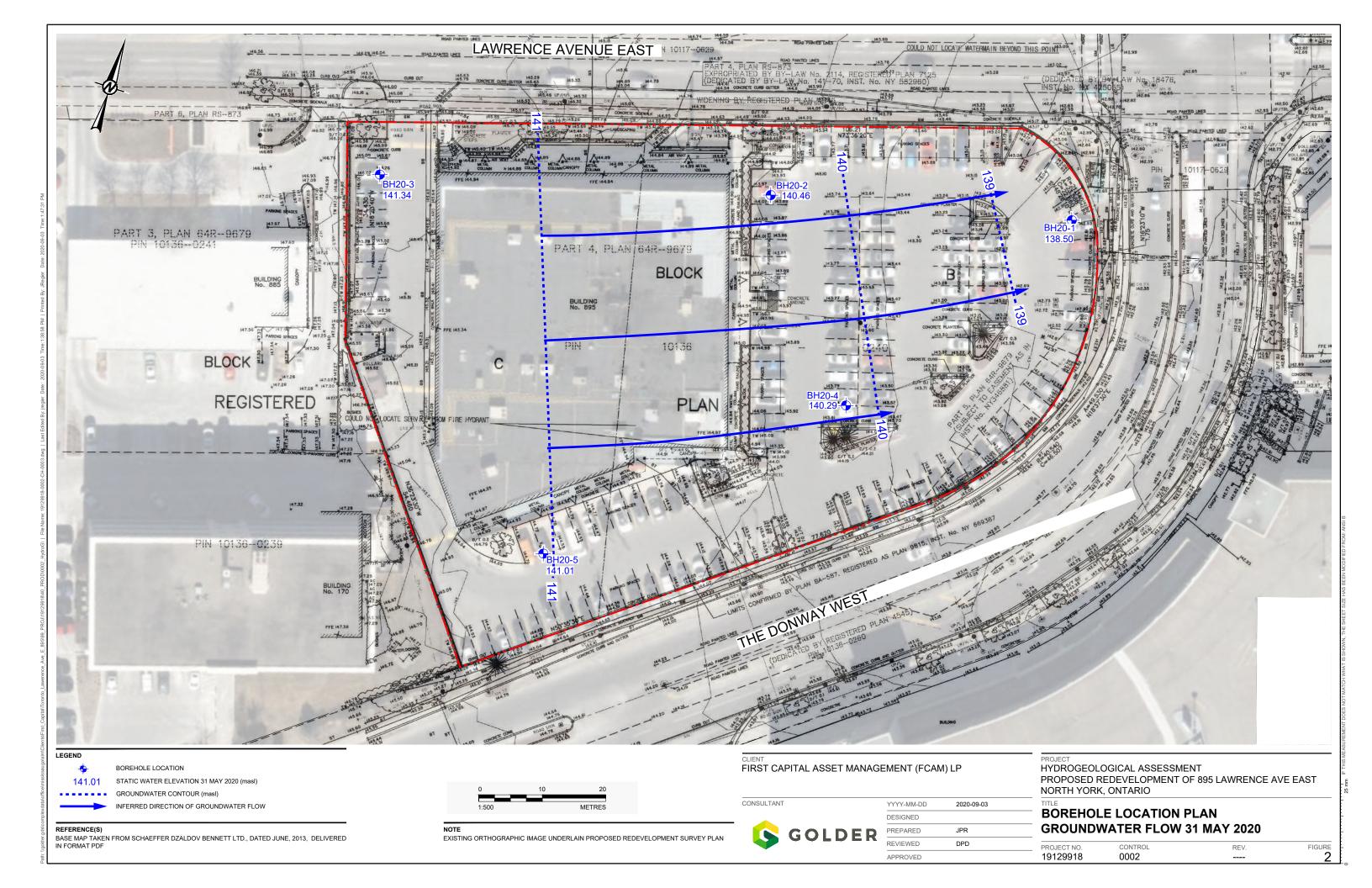
Table A Groundwater Level Measurements

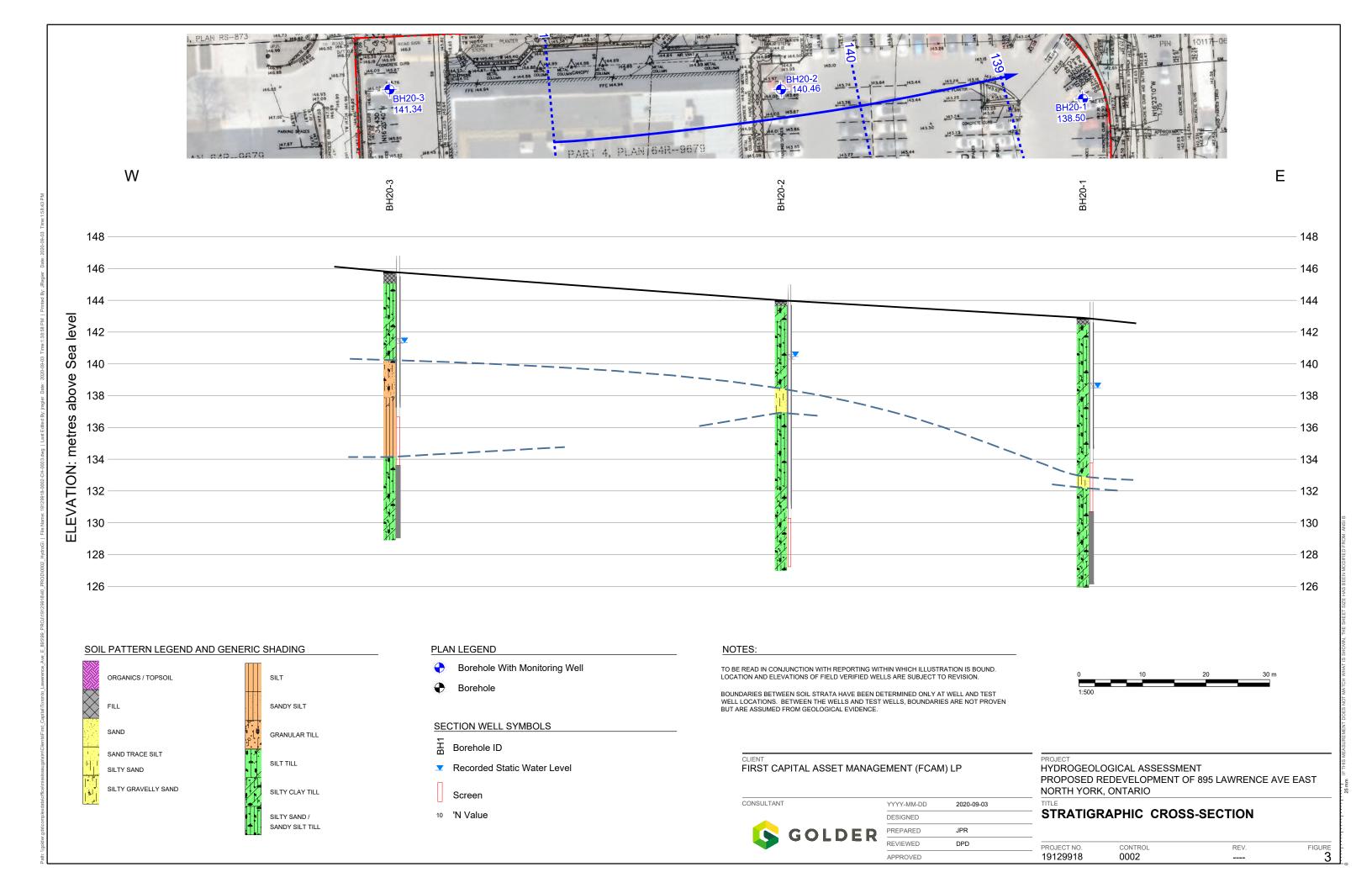
Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Stick-up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
BH20-5	16.8	144.6	-0.06	13-May-20	3.53	3.59	141.01	1.1E-08	silty clay/clayey silt till
				21-May-20	3.47	3.53	141.07		
				5-Jun-20	3.50	3.56	141.04		
				16-Jun-20	3.50	3.56	141.04		
				7-Jul-20	3.56	3.62	140.98		
				22-Jul-20	3.60	3.66	140.94		

Notes:

1. m toc meters below top of casing

2. masl meters above sea level


3. m bgs meters below ground surface


4. Table to be read in conjunction with accompanying report

5. Superscript ¹ denotes approximate stickups

Figures

APPENDIX A

Important Information and Limitations

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

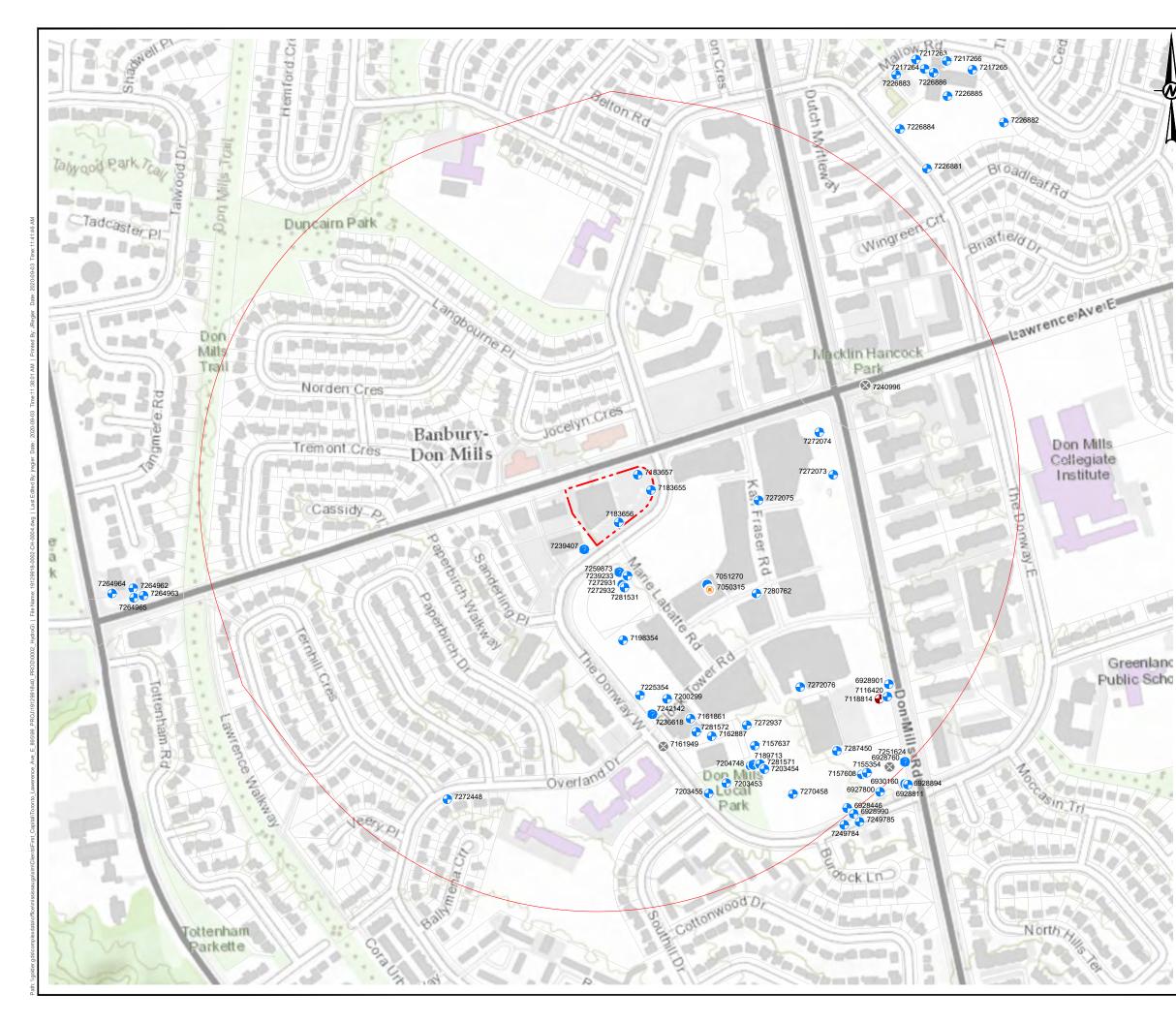
Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.


During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

Water Well Database Records

MAP KEY

PLAN LEGEND

ΕT
E.

- SANDPOINT / DEWATERING PIEZOMETER
- DRILLED OVERBURDEN WELL
- TEST OR OBSERVATION WELL
- MONITORING NEST CENTROID

REFERENCES & DISCLAIMERS

MINISTRY OF ENVIRONMENT WATER WELL INFORMATION SYSTEM, QUEEN'S PRINTER. LOCATION AND ELEVATIONS OF MAPPED WELLS ARE SUBJECT TO REVISION BASED ON DRILL RECORD OR FIELD VERIFICATION.

ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

0	100	200	300 m		
1:5000					
PLOTTED	11X17" TABLOID	PROJECTION	IS UTM NAD 83 ZONE 17		

CLIENT FIRST CAPITAL ASSET MANAGEMENT (FCAM) LP

PROJECT HYDROGEOLOGICAL AND GEOTECHNICAL EXPLORATION PROPOSED REDEVELOPMENT OF 895 LAWRENCE AVE EAST NORTH YORK, ONTARIO

MINISTRY RECORDED WELLS

TITL

CONSULTANT

YYYY-MM-DD 2020-09-03 DESIGNED PREPARED JPR GOLDER REVIEWED DPD APPROVED FIGURE REV. 4 ----

PROJECT NO 19129918

CONTROL 0002

LABEL CON	DATE		ELEV		CR TOP LEN	SWL RATE				
		NORTHING	masl	mbgl Qu	mbgl m	mbgl L/mir	n min	<u> </u>	STAT	DESCRIPTION OF MATERIALS
6927800	Mar-04		127.1		4.9 -3.0	NR		6607	OW	MOE# 6927800 TAG#A010211
		4843470						-	-	0.0 BRWN SAND GRVL FILL 3.0 BRWN SAND 7.9
6928446	Jun-04	633415	146.3		13.1 -6.1	NR		6809	OW	MOE# 6928446 TAG#A011041
		4843448						OTH	-	0.0 BRWN SAND SILT 2.1 BRWN SILT SAND 4.9
										GREY SILT 7.9 BRWN SAND 18.0 GREY SILT 19.5
6928760	Feb-05	633473	143.3			NR		6607	AB	MOE# 6928760
		4843504						BR	NU	0.0
6928811	Feb-05	633498	89.6	12.2 Un	16.8 -1.5	NR		6607	OW	MOE# 6928811 TAG#A021364
		4843480						-	-	0.0 BRWN SILT SAND 1.5 BRWN SAND 13.7 GREY
										SILT CLAY 18.3
6928894	Mar-05	633494	144.2	12.5 Fr	11.6 -6.4	NR		6607	-	MOE# 6928894 TAG#A021364
		4843481						BR	-	0.0 BRWN SAND 17.7 GREY CLAY SILT 18.0
6928901	Feb-05	633472	140.5	7.0 Fr	5.2 -3.0	NR		6607	OW	MOE# 6928901 TAG#A021374
		4843617						-	-	0.0 BRWN SAND DRY 7.0 BRWN SAND WBRG 7.6
										GREY CLAY SILT DNSE 8.2
6928990	Apr-05	633424	146.6		11.9 -6.1	NR		1129	OW	MOE# 6928990 TAG#A025755
	•	4843440						OTH	-	0.0 BRWN SAND SILT WBRG 15.8 BRWN SAND LOOS
										DNSE 17.4 GREY SILT DNSE 18.0
6930160	Apr-06	633492	144.2		16.5 -1.5	NR		6607	AB	MOE# 6930160 TAG#A021364
	•	4843480						BR	-	0.0
7050315	Sep-07	633224	143.0	0.9 Fr		NR		6926	-	MOE# 7050315 TAG#A058475
		4843753						OTH	DW	0.0 GREY SILT SAND DRY 2.1 GREY SILT SAND
		1010100						0111	2	SLTY 7.0
7051270	Sep-07	633224	143.0			NR		6926	-	MOE# 7051270 TAG#A058475
		4843753						-	-	0.0 GREY SILT TILL SAND 2.1 GREY SILT TILL
		1010100								SAND 7.0
7116420	Oct-08	633470	140.8		5.2 -3.4	NR		6032	OW	MOE# 7116420 TAG#A021374
1110120	00100	4843600	110.0		0.2 0.1			BR	MO	0.0 WHTE HARD 0.3 BRWN SILT CLAY DNSE 5.8
		+0+0000						DIX	WIC	BRWN SAND CSND SOFT 7.6 GREY SILT CLAY DNSE
										8.5
7118814	Sep-08	633459	141.4	7.9 Fr		NR		6607	TH	MOE# 7118814 TAG#A078548
7110014	000 00	4843597	171.7	7.011				-	MO	0.0 BRWN SAND GRVL CLAY 1.5 BRWN MSND DNSE
		+0+0007						_	WIC	9.1 GREY SILT CLAY DNSE 9.4
7155354	Oct-10	633442	143.6		9.8 -3.0	NR		6032	OW	MOE# 7155354 TAG#A093909
7 100004	001-10	4843496	140.0		0.0 -0.0			-	MO	0.0 BRWN SAND GRVL PCKD 0.9 BRWN SAND SILT
		4043490						-	NO	HARD 12.8
7157608	Dec-10	633435	143.9		11.0 0.0	NR		7215	TH	MOE# 7157608 TAG#A108050
101000	Dec-10	4843494	1-0.3		11.0 0.0			RC	ТН	0.0 BRWN FILL 0.6 BRWN SAND SLTY 11.0
7157637	Nov-10	633289	1/6 2		10.7 0.0	NR		7215	TH	MOE# 7157637 TAG#A108048
10/03/	1107-10		140.5		10.7 0.0	INFX				
		4843533						RC	TH	0.0 BRWN FILL CGVL SAND 0.9 BRWN SAND 1.8 BRWN TILL SILT GRVL 4.3 GREY TILL SILT GRVL
										7.6 GREY TILL SILT GRVL 9.1 GREY SILT SAND
7464964	Lab 11	600004	140.0	6 1 1	04.00			0007	014	WBRG 10.7
7161861	Feb-11	633201	140.3	6.1 Un	9.1 -3.0	NR		6607	OW	
		4843570						BR	MO	0.0 BRWN SAND GRVL FILL 0.6 GREY SILT CLAY
										DNSE 4.6 GREY SILT SAND DNSE 6.1 GREY SAND
										LOOS 12.2

LABEL CON LOT	DATE	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL R mbgl L		ME nin			WELL NAME DESCRIPTION OF MATERIALS
7161949	Mar-11	633164	147.5	nnogr aa	insgi in	NR			7215		MOE# 7161949
101040		4843532	147.0						-	-	0.0
7162887	Nov-11	633230	146.3		11.6 -3.4	NR			7247	7 OW	MOE# 7162887 TAG#A095122
		4843546							BR	MO	0.0 BLCK WSTE 7.9 BRWN GRNT PCKD 25.0 BRWN
											FILL SILT GRVL 4.6 GREY SILT GRVL SNDY 6.1
											BRWN MSND SILT DNSE 10.7 GREY SILT SAND DNSE
											14.9
7183655	Jun-12	633147	143.6		1.8 -1.5	NR			724 <i>°</i>	1 TH	MOE# 7183655 TAG#A133618
		4843882							OTH	I TH	0.0 BRWN SAND GRVL LOOS 0.3 BRWN SAND SILT
											LOOS 3.0 GREY SILT CLAY DNSE 3.4
7183656	Jun-12	633103	144.2		2.4 -3.0	NR			7242		MOE# 7183656 TAG#A133617
		4843838							OTH	i TH	0.0 BRWN SAND GRVL LOOS 0.3 BRWN SILT SAND
											LOOS 2.4 GREY SILT SAND LOOS 5.5
7183657	Jun-12	633129	143.6		3.0 -3.0	NR			7242		MOE# 7183657 TAG#A133467
		4843903							OTH	i TH	0.0 BRWN SAND GRVL LOOS 0.3 BRWN SILT CLAY
										_	DNSE 3.4 GREY SILT CLAY DNSE 6.1
7189713	Jul-12	633287	146.6			NR			6607	-	MOE# 7189713 TAG#A132975
7400054	F 10	4843507	440.0	0.5.1.6	70.00	ND			-	-	0.0
7198354	Feb-13	633109	146.9	8.5 Un	7.6 -3.0	NR			750		MOE# 7198354 TAG#A143121
		4843677							RC	TH	0.0 BRWN SILT SAND LOOS 4.6 BRWN SILT SAND DNSE 7.6 GREY SAND SILT DNSE 10.7
7200299	Mar-13	633169	146.6	10.7 Un	10.7 -3.0	NR			7502	1 TH	MOE# 7200299 TAG#A143176
		4843597							RC	TH	0.0 BRWN CLAY SILT SAND 10.7 BRWN SAND SILT
											LOOS 13.7
7203453	Jun-13	633250	146.9		10.7 -3.0	NR			7238		MOE# 7203453 TAG#A146066
		4843482							BR	TH	0.0 BRWN FILL GRVL PCKD 1.5 BRWN CLAY SILT
											HARD 4.6 GREY SILT SAND HARD 9.1 GREY SILT
											HARD CLAY 13.7
7203454	Jun-13	633302	146.6		15.2 -1.5	NR			7238		MOE# 7203454 TAG#A146056
		4843501							BR	TH	0.0 BRWN FILL GRVL PCKD 1.5 BRWN CLAY HARD
											GRVL 6.1 BRWN SILT SAND DNSE 10.7 GREY SILT
7203455	Jun-13	633226	147.5		10.7 -3.0	NR			7238	3 OW	CSND SOFT 13.7 GREY SAND SILT SOFT 16.8 MOE# 7203455 TAG#A146067
203455	Jun-15	4843468	147.5		10.7 -3.0	ININ			BR		0.0 BRWN FILL GRVL PCKD 1.5 BRWN CLAY SILT
		4043400							DR	П	HARD 4.6 GREY SILT SAND HARD 9.1 GREY SILT
											CLAY HARD 13.7
7204748	Jul-13	633283	146.6	12.2 Un	24.4 -1.5	NR			7238	3 OW	MOE# 7204748 TAG#A146062
201110	our ro	4843506	110.0	12.2 011	2111 1.0				OTH		0.0 GREY SAND SILT 10.7 GREY SAND SILT 23.2
		1010000							e n		GREY SILT CLAY 25.3 GREY SAND SILT 25.9
7225354	Jun-14	633132	147.2		7.6 -1.5	7.9	5	7	8.8 1663	B TH	MOE# 7225354 TAG#A146978
		4843602							RC		0.0 BRWN TPSL 0.3 BRWN FILL 1.5 BRWN CLAY
											GRVL 5.5 GREY CLAY GRVL SILT 7.0 BRWN SILT
											SAND GRVL 9.1
7236618	Nov-14	633149	147.2			NR			6926	3 -	MOE# 7236618 TAG#A162886
		4843576								-	0.0
7239233	Oct-14	633103	145.7			NR			7230) -	MOE# 7239233 TAG#A170981
		4843770							-	-	0.0

LABEL CON LOT		EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL RATE mbgl L/min	TIME min m			WELL NAME DESCRIPTION OF MATERIALS
7239407	Apr-14	633056	146.0	nibyi Qu	mbgrm	NR		6809	- -	MOE# 7239407 TAG#A152289
		4843801						-	-	0.0
7240996	Feb-15	633440	139.6	1.5 Un		NR		7247	AB	MOE# 7240996
7040140	Apr 15	4844025 633149	117.0			NR		-	-	0.0 MOE# 7242142 TAC#A162886
7242142	Apr-15	4843576	147.2			INF		6926 -	-	MOE# 7242142 TAG#A162886 0.0
7249784	Jul-15	633411	147.2	14.3 Un	13.7 -3.0	NR		6607	OW	MOE# 7249784 TAG#A179876
		4843425						BR	TH	0.0 0.3 SAND TILL 2.1 SAND 16.8
7249785	Jul-15	633432	146.9	13.7 Un	13.7 -3.0	NR		6607	OW	MOE# 7249785 TAG#A179875
		4843429						BR	ТН	0.0 0.3 SAND TILL 2.1 SAND 16.8
7251624	Oct-15	633494	143.0			NR		6607	-	MOE# 7251624 TAG#A192859
		4843511						-	-	0.0
7259873	Nov-15	633104	145.7			NR		7230	-	MOE# 7259873 TAG#A199749
		4843770						-	-	0.0
7270458	May-16	633341	146.9		9.1 -3.0	NR		6032	OW	MOE# 7270458 TAG#A194307
		4843467						BR	MO	0.0 BRWN SAND SILT DNSE 4.6 GREY SILT SAND
										DNSE 10.4 GREY SILT SAND DNSE 12.2
7272073	Aug-16	633396	142.0		5.2 -3.0	NR		7241	-	MOE# 7272073 TAG#A205727
		4843903						RC	-	0.0 BRWN CLAY 3.7 GREY CLAY 8.2
7272074	Aug-16	633377	141.7		1.5 -3.0	NR		7241	-	MOE# 7272074 TAG#A205728
		4843961						RC	-	0.0 BRWN SAND GRVL WBRG 4.6
7272075	Aug-16	633294	142.3		4.9 -3.0	NR		7241	-	MOE# 7272075 TAG#A205729
		4843868						RC	-	0.0 BRWN SAND GRVL WBRG 3.7 GREY SAND SILT
										WBRG 7.6 GREY SAND SILT TILL 7.9
7272076	Aug-16	633351	142.3		5.2 -3.0	NR		7241	-	MOE# 7272076 TAG#A205731
		4843613						RC	-	0.0 BRWN TILL SILT CLAY 6.1 GREY TILL SILT SAND 8.2
7272448	Sep-16	632869	144.2		1.5 -1.5	NR		6902	OW	MOE# 7272448 TAG#A184387
1212440	00p-10	4843460	144.2		1.0 - 1.0			-	MO	0.0
7272931	Jul-16	633115	145.7	4.3 Un	5.5 -3.0	NR		6875	OW	MOE# 7272931 TAG#A199861
1212001		4843765	110.1	1.0 011	0.0 0.0			RC	MO	0.0 BLCK WSTE GRVL 0.3 GREY TPSL SAND LOOS
		1010100							me	1.8 GREY SILT FSND HARD 3.4 BRWN CSND FSND
										WBRG 7.0 GREY SILT CLAY DNSE 8.5
7272932	Jul-16	633108	146.0	7.6 Un	21.6 -1.5	NR		6875	-	MOE# 7272932 TAG#A199862
		4843753						RC	-	0.0 GREY GRVL WSTE 0.3 GREY TPSL SILT SAND
										1.8 GREY SILT FSND HARD 3.4 BRWN CSND FSND
										SILT 7.0 GREY SILT CLAY SAND 11.6 GREY CLAY
										SILT FSND 22.9
7272937	Jul-16	633278	146.0	7.6 Un	9.1 -3.0	NR		6875	OW	
		4843561						RC	MO	0.0 BRWN TPSL SAND CLAY 1.8 BRWN SILT CLAY
										FSND 4.6 BRWN FSND SILT DNSE 8.8 BRWN SAND
										GRVL SILT 11.6 GREY CLAY SILT SOFT 11.9
7280762	Aug-16	633291	141.7		6.1 -3.0	NR		7241	-	MOE# 7280762 TAG#A205730
		4843741						RC	-	0.0 BRWN SAND GRVL 6.1 GREY SAND SILT 9.1
7281531	Jun-16	633111	146.0		6.1 -3.0	NR		6032	OW	MOE# 7281531 TAG#A202410
		4843749						BR	MO	0.0 BRWN SAND GRVL SOFT 2.4 BRWN SILT SAND
										DNSE 6.1 GREY SAND SILT DNSE 9.1

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING		WTR FND mbgl Qu	CR TOP LEN mbgl m		RATE L/min	TIME min	PL DRILLER mbgl METHOD		WELL NAME DESCRIPTION OF MATERIALS
7281571		Jun-16	633296	146.6		18.3 -3.0	NR			6032	OW	MOE# 7281571 TAG#A202433
			4843508							BR	MO	0.0 GREY SILT GRVL DNSE 16.8 BRWN SAND SILT WBRG 21.3
7281572		NR	633209	146.3		10.7 -3.0	NR			6032	OW	MOE# 7281572 TAG#A202410
			4843552							BR	MO	0.0 GREY SILT SAND DNSE 10.7 BRWN SAND WBRG
												13.7
7287450		Aug-16	633401	144.2		18.3 -3.0	NR			6032	OW	MOE# 7287450 TAG#A202384
			4843526							BR	MO	0.0 BRWN SAND SILT DNSE 16.8 BRWN SAND DNSE 21.3

	QUALITY:		TYPE:		USE	:		М	ETHOD :
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	СТ	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy. Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

APPENDIX C

Borehole Logs

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{(30)^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name								
		of is im)	Gravels with	Poorly Graded		<4		≤1 or ≥3			GP	GRAVEL								
(ss)	5 mm)	GRAVELS 3% by mass trse fraction r than 4.75 n	≤12% fines (by mass)	Well Graded	ded ≥4		1 to 3			GW	GRAVEL									
by ma	SOILS an 0.07	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with >12%	Below A Line		n/a					GM	SILTY GRAVEL								
∋ANIC t ≤30%	AINED rger th	(>) cc	fines (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL								
INOR	SE-GR ss is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or 3	≥3	20070	SP	SAND								
INORGANIC (Organic Content ≾30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND								
Q	(>50%	SAI 50% by oarse f iller tha	Sands with >12%	Below A Line			n/a				SM	SILTY SAND								
		(≥ sma	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND								
Organic	Soil	_		Laboratory		1	Field Indica	ators	Touchnoos	Organic	USCS Group	Primary								
or Inorganic	Group	Туре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name								
		- plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT								
(ss)	75 mm	75 mm	75 mm	75 mm	75 mm	75 mm	75 mm	75 mm	75 mm	S	l and L Line icity 'low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT
INORGANIC (Organic Content ≲30% by mass)	OILS Ian 0.0	250% by mass is smaller than 0.075 mm) 21AYS SILTS SILTS	SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT								
NORGANIC ≎ontent ≤30%	NED S naller th			Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT								
INOR(FINE-GRAINED SOILS mass is smaller than 0.	ON)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT								
ganic (FINE by mas		e on art	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0% to	CL	SILTY CLAY								
Ō.	≥50%	CLAYS	(PI and LL plot above A-Line on Plasticity Chart below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	30% (see Note 2)	CI	SILTY CLAY								
			Plast	Liquid Limit ≥50	None	High	Shiny	<1 mm	High		СН	CLAY								
N C	nic >30% ss)		mineral soil ttures				•			30% to 75%		SILTY PEAT, SANDY PEAT								
HIGHLY ORGANIC SOILS	(Urganic Content >30% by mass)	may con mineral sc	nantly peat, ntain some pil, fibrous or nous peat							75% to 100%	PT	PEAT								
40 30 (Idi xəpu) Ayştixeld 10 73	HLTY CLAY-CLAY	Flasticity SILTY CL TEY SILT, CL-MIL See Note 1)		SILTY CLAY CI BUR LAYEY SILT ML RGANIC SILT OL	CLAY CH CLAYEY S ORGANIC 1			a hyphen, For non-cc the soil h transitiona gravel. For cohess liquid limit of the plass Borderlin separated A borderlin has been	for example, bhesive soils, as between al material b ive soils, the and plasticity sticity chart (s e Symbol — by a slash, f ne symbol sh identified as	GP-GM, S the dual s 5% and etween "c dual symb y index val ee Plastic - A borderl or example nould be us s having p	two symbols SW-SC and Cl ymbols must b 12% fines (i.« lean" and "di bol must be us ues plot in the ity Chart at lef ine symbol is e, CL/CI, GM/S sed to indicate properties tha ils. In addition	ML. e used when e. to identify rty" sand or ed when the CL-ML area t). two symbols SM, CL/ML. that the soil t are on the								

80

20

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

40

Liquid Limit (LL)

50

60

symbol may be used to indicate a range of similar soil types within a stratum.

D

10

20 25.5 30

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.,</i> SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²					
Term	SPT 'N' (blows/0.3m) ¹				
Very Loose	0 to 4				
Loose	4 to 10				
Compact	10 to 30				
Dense	30 to 50				
Very Dense	>50				

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description					
Dry	Soil flows freely through fingers.					
Moist	Soils are darker than in the dry condition and may feel cool.					
Wet	As moist, but with free water forming on hands when handled.					
	Dry Moist					

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test ¹
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

	COHESIVE SOILS					
Consistency						
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)				
Very Soft	<12	0 to 2				
Soft	12 to 25	2 to 4				
Firm	25 to 50	4 to 8				
Stiff	50 to 100	8 to 15				
Very Stiff	100 to 200	15 to 30				
Hard	>200	>30				

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

Water Content					
Term	Description				
w < PL	Material is estimated to be drier than the Plastic Limit.				
w ~ PL	Material is estimated to be close to the Plastic Limit.				
w > PL	Material is estimated to be wetter than the Plastic Limit.				

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _i or LL	liquid limit
ln x	natural logarithm of x	\mathbf{w}_{p} or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	I _p or PI	plasticity index = (w _l – w _p)
g	acceleration due to gravity	NP	non-plastic
t	time	Ws IL	shrinkage limit liquidity index = (w – w _P) / I _P
		lc	consistency index = $(w - w_p) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
		ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
3	linear strain volumetric strain	q	rate of flow velocity of flow
ε _v	coefficient of viscosity	v i	hydraulic gradient
η υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress	K	(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate,		
	minor)	(c)	Consolidation (one-dimensional)
	mean stress or octahedral stress	Cc	compression index (normally consolidated range)
σoct		Cr	recompression index
τ	= $(\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress	O,	(over-consolidated range)
ů	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Τv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ͽ OCR	pre-consolidation stress
(a)	Index Properties bulk density (bulk unit weight)*	UCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω) ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρ(γ.) ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ΄ δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio	p p'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	porosity degree of saturation	p′ q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
U		ч qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dowei	ity aumholia a linit weight aumholic	Notes: 1	
	ity symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes. 1 2	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

		CT: 19129918 (1000)	RECORD OF BOREHOLE: BH2	SHEET 1 OF 2
LO	CATI	ON: See Figure 2	BORING DATE: March 19, 2020	DATUM: Geodetic
SP	T/DC	CPT HAMMER: MASS, 63kg; DROP, 760mm		HAMMER TYPE: AUTOMATIC
METRES	BORING METHOD	SOIL PROFILE	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HY ELEV. Max % 20 40 60 80 DEPTH (m) Max % SHEAR STRENGTH nat V. + Q - • •	20RAULIC CONDUCTIVITY, k, cm/s Image: cm
_	Ш	GROUND SURFACE	142.90 <u>a</u> 20 40 60 80	10 20 30 40
0		ASPHALT (~130 mm thick) FILL - (SP/GP) SAND and GRAVEL,	142.90 0.00 0.13	Concrete
		some fines; brown; non-cohesive, moist (CL) SILTY CLAY, some sand, trace gravel; brown (TILL); oxidation stains; cohesive, w <pl, stiff<="" td="" very=""><td>142.47 0.43 1 SS 12</td><td></td></pl,>	142.47 0.43 1 SS 12	
1		(ML) sandy SILT, trace gravel; brown to grey (TILL); non-cohesive, moist, dense to very dense	2 SS 18 141.53 1.37	Monitoring Well
2			3 SS 30 4 SS 57	Φ
3		- Becomes grey at a depth of about	5 SS 50/ 0.1	0
4		3.3 m (CL-ML) SILTY CLAY to CLAYEY SILT.	<u>136.96</u> 3.94	
5	CME 75 Truck Mounted Rig 140 mm Solid Stem Augers	trace sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td>6 SS 46</td><td>Bentonite Seal ∑ June 16, 2020</td></pl,>	6 SS 46	Bentonite Seal ∑ June 16, 2020
6	CME 75 140 mm	(ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense	137.34 5.56 7 SS 50/ 0.13	0
7			8 SS 50/ 0.13	o
9		(CL-ML) SILTY CLAY to CLAYEY SILT, trace sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td><u>134.37</u> 8.53</td><td>Sand</td></pl,>	<u>134.37</u> 8.53	Sand
10			9 SS 50/ 0.07	O Silica Sand Filter and Screen
		CONTINUED NEXT PAGE		

LOCATION: See Figure 2 BORING DATE: March 19, 2020 SPT/DCPT HAMMER: MASS, 63kg; DROP, 760mm	RAULIC CONDUCT k, cm/s	HAMM		ATUM: Geodetic								
	RAULIC CONDUCT k, cm/s	HAMN										
	RAULIC CONDUCT k, cm/s		1ER T	YPE: AUTOMATIC								
Image: Ima		ivity, T	AL NG	PIEZOMETER								
Image: Solid profile Solid profile SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDE Image: Solid profile Image: Solid profile </th <td>10⁻⁶ 10⁻⁵ 10 VATER CONTENT</td> <td>0⁻⁴ 10⁻³</td> <td>ADDITIONAL LAB. TESTING</td> <td>OR STANDPIPE</td>	10 ⁻⁶ 10 ⁻⁵ 10 VATER CONTENT	0 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE								
$\begin{bmatrix} 0 & 2 & 2 & 4 & 0 & 0 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	/p		ADD LAB.	INSTALLATION								
CONTINUED FROM PREVIOUS PAGE	10 20 3	0 40										
10 (SM) SILTY SAND, some gravel; grey; 10.00 - non-cohesive, moist, very dense 12.1												
(CL-ML) SILTY CLAY to CLAYEY SILT, 2216 100 SS 50/ (CL-ML) SILTY CLAY to CLAYEY SILT, 229 10.74 4995	,o											
Image: Construction of the state of the				Silica Sand Filter								
				and Screen								
(ML) sandy SILT, some gravel; grey + 11.51												
- (TILL); non-cohesive, moist, very dense												
				-								
13 \vec{k} (CL-ML) SILTY CLAY to CLAYEY SILT, 12.98 trace to some sand, trace gravel; grey												
13 B ² B ² B ² CL-ML) SILTY CLAY to CLAYEY SILT, 12.98 (CL-ML) SILTY CLAY to CLAYEY SILT, 12.98 (TILL); cohesive, w <pl, hard<br="">10 B² B² B² B² CLAYEY B² B² B² B² B² B² B² B²</pl,>												
1 1												
				Cave/Bentonite								
				-								
				-								
1 13 ss 50/ 0.13	φ			-								
				-								
				-								
125.93 14 SS 50/ 125.93 14 SS 50/ 10.05	φ											
I 17 END OF BOREHOLE 16.97				-								
1. Borehole caved at a depth of about												
11.3 mbgs upon completion of drilling.				-								
2. Groundwater level measured in monitoring well as follows:												
Date Depth(m) Elev. (m) 13/05/2020 4.4 138.5												
2 21/05/2020 4.4 138.5												
05/06/2020 4.4 138.5 16/06/2020 4.4 138.5												
				-								
DEPTH SCALE GOLDER				ECKED: RA								

PROJECT:	19129918 (1000)
LOCATION:	See Figure 2

RECORD OF BOREHOLE: BH20-2

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: March 19 to 24, 2020

HAMMER TYPE: AUTOMATIC

		_	T HAMMER: MASS, 63kg; DROP, 760mm SOIL PROFILE			SAM	MPLE	ES	DYNAMIC PENETR	ATION	<u>۱</u>	HYDRA			TIVITY,		-		YPE: AUTOMATIC
METRES	BORING METHOD			0T			- 1		RESISTANCE, BLO 20 40	WS/0.3m 60	80	10	k, cm/s) ^{.6} 1(0-4	10 ⁻³		ADDITIONAL LAB. TESTING	PIEZOMETER OR
ETRI	IG ME		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH	Inat V	+ Q- ●		ATER C	DNTEN	Г PERC			TES	
jΣ	DRIN		DESCRIPTION	RAT	DEPTH (m)	NUN	2	NO-	Cu, kPa	rem V. 6	Ð U-Ō		• 	W		w		LAB.	INSTALLATION
	ă			ST	(11)			Ы	20 40	60	80	1	0 2		30	40			
0	-		GROUND SURFACE		144.00										-	_	\square		12.31
		$\left \right $	ASPHALT (~130mm thick) FILL - (SP/GP) SAND and GRAVEL,	***	0.00 0.13														Concrete
			some fines; brown; non-cohesive, moist, \loose		143.64 0.36	1	ss	6				0							
			(CL) SILTY CLAY, some sand, trace					Ũ				Ŭ							
			gravel; brown (TILL); oxidation stains, cohesive, w <pl, firm="" stiff<="" td="" to=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>																
1		gers				2	ss	10					0						50 mm Diameter Monitoring Well
		Stem Augers																	
		ste ste	(ML) sandy SILT, trace gravel; brown		142.63 1.37														
		Hollow	(TILL), oxidation stains; non-cohesive, moist, very dense																
		Ū.				3	SS	65				0							
2		140 mm I.D.			1	\vdash													
		-			1														
						4	ss	50/ 0.07				0							
3	╞	-				5	ss	50/				0							[
					1	Ħ		υ.13											[
					1														
					1														
		╞	(CL) SILTY CLAY, some sand, trace		140.11 3.89														June 16, 2020
4			gravel; grey (TILL); cohesive, w <pl, hard</pl, 		5.00														
			naiu		1														📕
	Rig			6		Ш													
	unted					6	ss	42					0						[
5	CME 75 Truck Mounted Rig				1	Ľ		72					0						
Ĭ	5 Truc																		Bentonite Seal
	ME 7.																		
	0	╞	(SM) SILTY SAND, some gravel; grey;	FFF	138.44 5.56														
		Buj	non-cohesive, moist, very dense																
6		Mud Rotary Drilling																	
		Rotar			1														
		I pnw			1	7	SS	80					0					М	
		- auo			1	\square													
		Dia Tricone																	
7		mm Di	(44)		136.91														
		98 m	(ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense		7.09														
					1														
						\vdash													
						8	ss	56				0							
8						\vdash													
					1														
9					1														
3						\vdash													
						9	ss	54				0							
						Ш													
					1														
10		_			1	\vdash	- –	_		_ +	-	+			.	.+-	· _ -		L
			CONTINUED NEXT PAGE																
	DTL	1.9	CALE								_							1.0	OGGED: AD/SS
		10							GOL	DE	R								ECKED: RA
1:5	50								-									СН	ecked: RA

			T: 19129918 (1000) N: See Figure 2		REC	OR	D	OF BO	OREH	OLE:	BI	H20-2				HEET 2 OF 2
			-				BOR	ING DATE	E: March 19	to 24, 20)20					ATUM: Geodetic
	-		PT HAMMER: MASS, 63kg; DROP, 760mm					DYNAMI		ION	<u> </u>	HYDRAULIC			IMER T	YPE: AUTOMATIC
DEPTH SCALE METRES		BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER TYPE	Зт	RESISTA 20	ANCE, BLOW	S/0.3m 60 nat V. + rem V. €	30 Q - ● U - ○	k, cm/ 10 ⁻⁶	10 ⁻⁵ 10 ⁻⁴ CONTENT PE <u>0</u> 20 30	10-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 1	0 -	-	CONTINUED FROM PREVIOUS PAGE													
	1 1 2 3 3 00 00 00 00 00 00 00 00 00 00 00 00	UME. / 3 TUCK MOUTINED FKg 98 mm Dia Tricone - Mud Rotary Drilling	CONTINUED FROM PREVIOUS PAGE (ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense (CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace to some gravel; grey (TILL); cohesive, w <pl, hard END OF BOREHOLE NOTE: 1. Groundwater level measured in monitoring well as follows: Date Depth(m) Elev. (m) 13/05/2020 3.5 140.5 21/05/2020 3.7 140.3 END OF 2020 3.7 140.3</pl, 		<u>132.34</u> 11.66	10 SS 11 SS 12 SS 13 SS 14 SS	50/ 0.1 50/									Sand Silica Sand Filter and Screen
			CALE													DGGED: AD/SS
ł)EP : 5						ľ		GOL	DE	R					ECKED: RA

_		PT HAMMER: MASS, 63kg; DROP, 760mm SOIL PROFILE			SA	MPL	ES	DYNAMIC PE RESISTANCE		ON /0.3m)		ULIC CON k, cm/s	DUCTIVII		-	
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 I SHEAR STRE Cu, kPa	40 6 NGTH I	50 8	Q - ● U - O	10	6 10 ⁻⁵	10 ⁻⁴ TENT PE O^W 30	10 ⁻³ RCENT 		PIEZOMETE OR STANDPIPE INSTALLATIO
0		GROUND SURFACE ASPHALT (~130 mm thick) FILL - (SP/GP) SAND and GRAVEL, trace fines; brown; non-cohesive, moist, compact		145.80 0.00 0.13		SS	23					0					Concrete
1	Stem Augers	(ML) sandy SILT, trace gravel; brown		145.06 0.74		SS	18					c	>				50 mm Diameter Monitoring Well
2	140 mm I.D. Hollow St		<u> </u>		3	SS	37					0					
	÷		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	142.90	4	SS	44					0					
3		(CL-ML) SILTY CLAY to CLAYEY SILT, some sand, trace gravel; grey (TILL); cohesive, w <pl, cohesive,="" hard<="" td="" w<pl,=""><td></td><td>2.90</td><td>5</td><td>SS</td><td>31</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></pl,>		2.90	5	SS	31					0					
CME 75 Truck Mounted Bin				140.24		SS	30					0					Bentonite Seal June 16, 2020
6	98 mm Dia Tricone - Mud Rotary Drilling		<u>۵۵ ۵۵ ۵۶ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵</u> ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵	5.56	7	SS	31					0					
3		(ML) sandy SILT, grey; non-cohesive, wet, very dense		137.88 7.92		SS	76					C	, 0				
9		(ML) SILT, trace to some sand, trace gravel; grey; slight plasticity; non-cohesive, moist, dense		137.19 8.61	9	SS	40						0				Sand
0							-								_+-		Silica Sand Filter and Screen

		T: 19129918 (1000)		REC	OF	RD	0	BOR	EHC	DLE:	Bl	H20-	3				Sł	HEET 2 OF 2	
LO	CATIC	N: See Figure 2				BC	RIN	DATE: Ma	ırch 27,	2020							D	ATUM: Geodetic	
SP		PT HAMMER: MASS, 63kg; DROP, 760mm														HAMI		YPE: AUTOMATIC	
sЧЕ	ГНОВ	SOIL PROFILE	F	1	SAN		F	YNAMIC PEN ESISTANCE,	BLOWS	/0.3m	ζ.		k, cm/s			. [ING	PIEZOMETER	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE		HEAR STREN u, kPa	IGTH	⊥ nat V. + rem V. ⊕	U- O	W. Wr	• 	DNTENT	PERCE	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION	
- 10		CONTINUED FROM PREVIOUS PAGE	S			-		20 4	0 0	50 8	0	1	0 2	0 3	0 4	10			
- - - - - - - - - - - - - - - - - - -		(ML) SILT, trace to some sand, trace gravel; grey; slight plasticity; non-cohesive, moist, dense			10	ss :	8						0					Silica Sand Filter	<u> </u>
	nted Rig Rotary Drilling	(ML) sandy SILT, trace gravel; grey (TILL); non-cohesive, moist, very dense	<u> </u>	134.14 11.66		55 0 ⁵	0/ 13						0					and Screen	<u> </u>
	CME 75 Truck Mounted Rig 98 mm Dia Tricone - Mud Rotary Drilling	(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td></td><td><u>131.86</u> 13.94</td><td>12A 12B 13</td><td></td><td>1/ 25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Bentonite</td><td></td></pl,>		<u>131.86</u> 13.94	12A 12B 13		1/ 25											Bentonite	
		END OF BOREHOLE NOTE: 1. Groundwater level measured in monitoring well as follows: Date Depth(m) 13/05/2020 4.5 141.3 21/05/2020 4.5 141.3 05/06/2020 4.5 141.3 16/06/2020 4.5 141.3		<u>128.91</u> 16.89	14 :	55 0	0/					0							
		SCALE				ļ		; GO) E F	२							OGGED: AD/SS IECKED: RA	

PROJECT:	19129918 (1000)
LOCATION:	See Figure 2

RECORD OF BOREHOLE: BH20-4

BORING DATE: March 25, 2020

SHEET 1 OF 2 DATUM: Geodetic

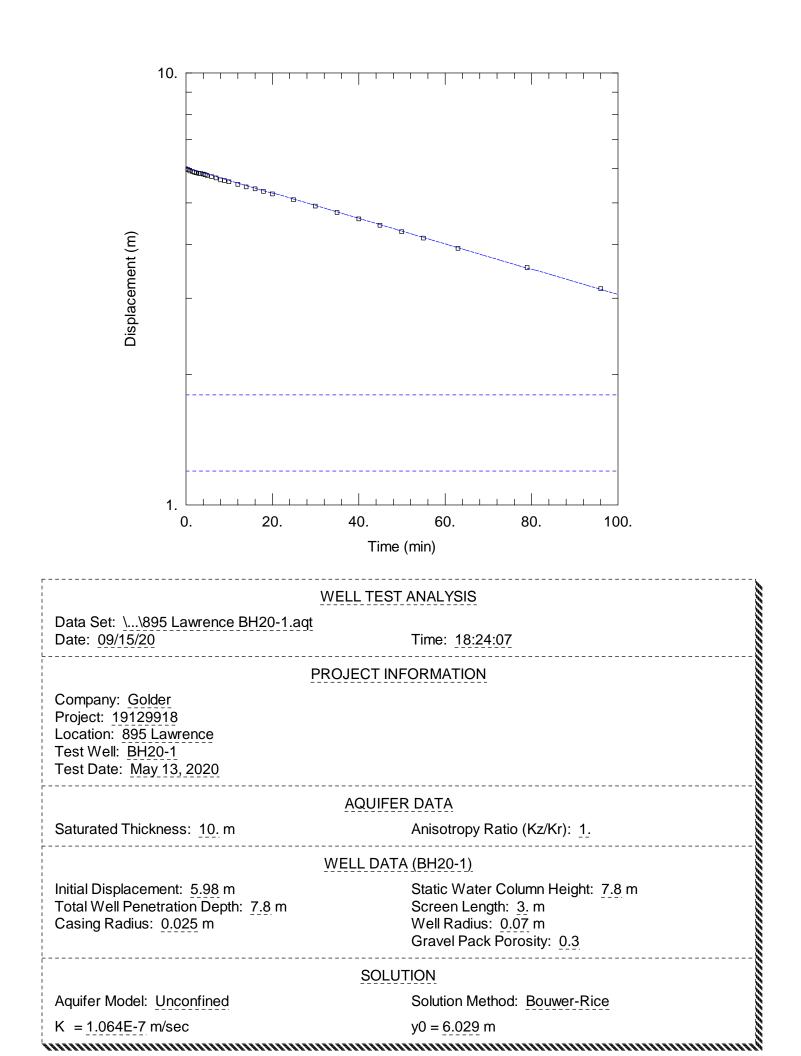
HAMMER TYPE: AUTOMATIC

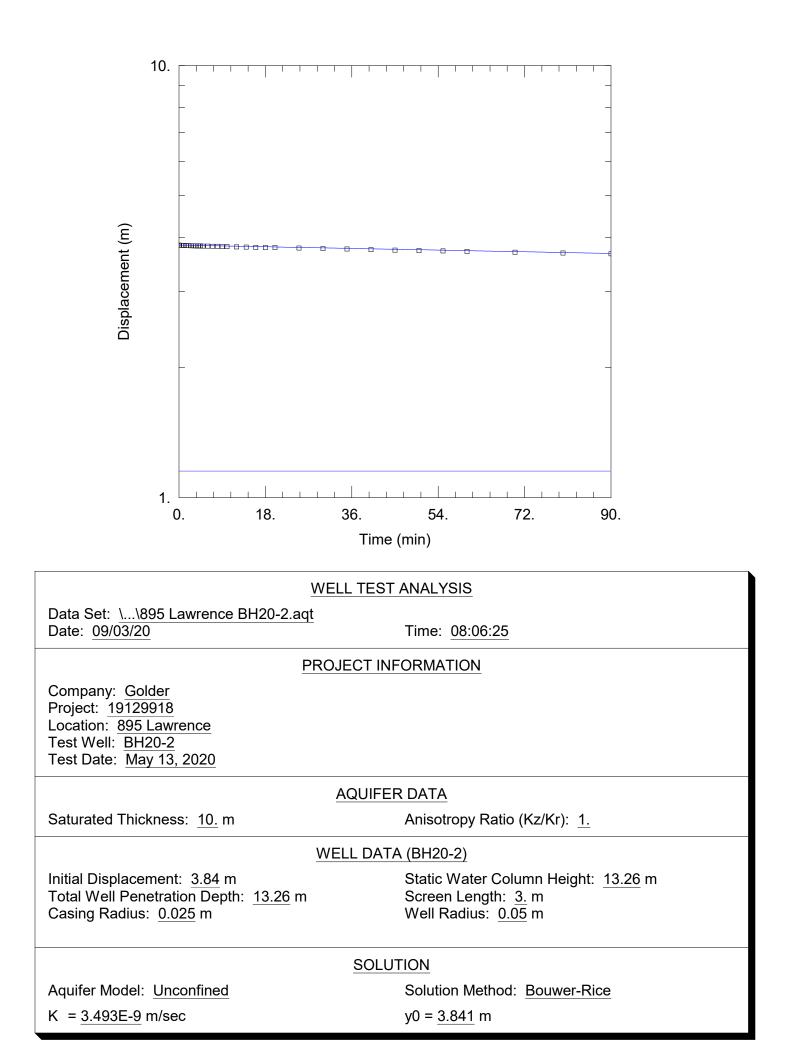
SPT/DCPT HAMMER: MASS, 63kg; DROP, 760mm

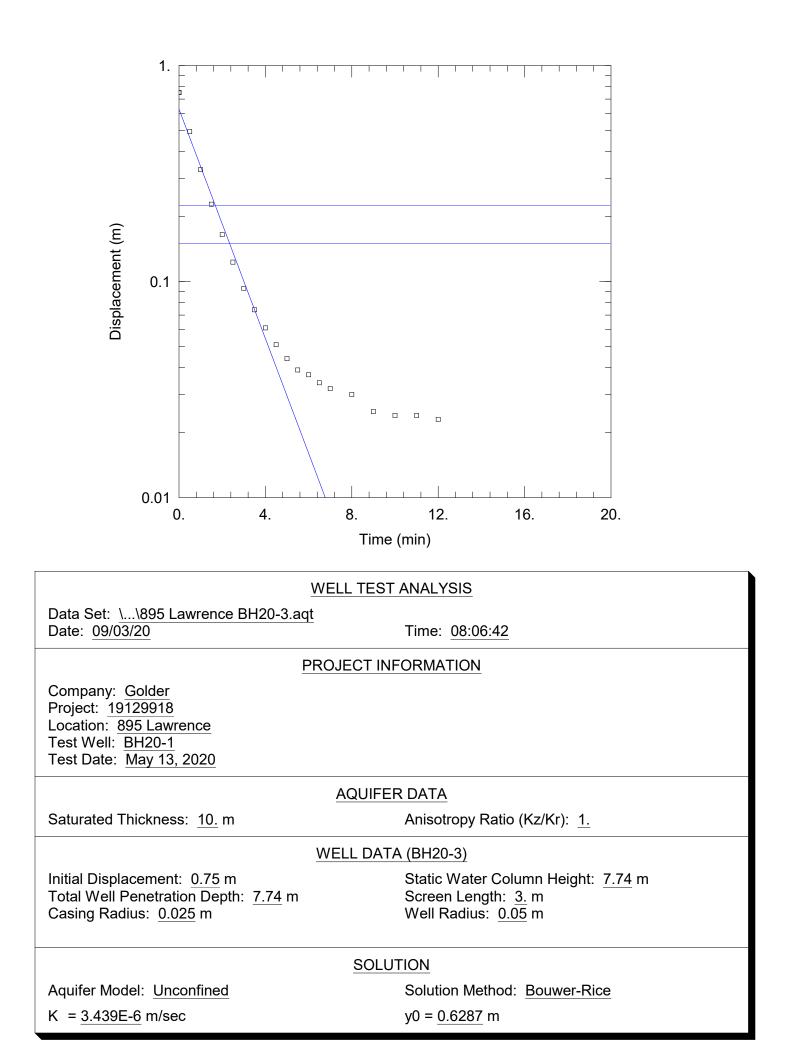
ŗ	DO		SOIL PROFILE			SAI	MPLE	DYNAMIC RESISTAN	PENETRA CE, BLOW	TION /S/0.3m	<u>\</u>	HYDRA	ULIC C k, cm/s	ONDUCT	IVITY,	T	. U	
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	20 SHEAR ST Cu, kPa	40 I RENGTH	60 nat V. – rem V. (€U-O	Wp	n ⁶ 1 ATER C	0 ⁻⁵ 10 ONTENT	PERCE	WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		_	D SURFACE	io I	143.60			20	40	60	80	1) 2	20 3	0	40		
0			LT (~130 mm thick) SP/GP) SAND and GRAVEL,		0.00													Concrete
		some fil loose FILL - (I gravel; l cohesiv	nes; brown; non-cohesive, moist, ML) sandy CLAYEY SILT, trace black, trace organic matter; e, w~PL, stiff		143.22 0.38	1	SS						0					
1	Ctom Attended	(ML) sa (TILL), o moist, c	ndy SILT, trace gravel; brown oxidation stains; non-cohesive, sompact to very dense	<u>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u>	0.99	2	SS 1						C					50 mm Diameter Monitoring Well
2	140 mm LD Holl			47444444 47444444444444444444444444444		3	SS 3					0						
				<u> </u>		4	SS 5	3				c	I					
3	-	(CL-ML some sa) SILTY CLAY to CLAYEY SILT, and, trace gravel; grey (TILL); e, w <pl, stiff<="" td="" very=""><td></td><td>140.70 2.90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		140.70 2.90													
		cohesiv	e, w≺PL, very stiff			5	SS 2	5					C					 June 16, 2020
4	ß	(ML) sa (TILL); r very der	ndy SILT, some gravel; grey non-cohesive, moist, dense to nse		139.56 4.04													Bentonite Seal
5	CME 75 Truck Mounted Rig			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6	SS 4	3				0						
6	Mud Botton Dulling	d Kotary Unimg		*********		7	ss 6	,				0						
7	00 mm Dia Trianna M			A & A & A & A & A & A & A & A & A & A &														
8		- Grave 7.6 m a	lly between the depths of about nd 7.9 m	7 9 4 8 9 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8	ss 50	V 1				0						
9		(SM) SI non-coh	LTY SAND, some gravel; grey; resive, wet, very dense	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	135.07 8.53													Sand
						9	SS 7						С	,				Silica Sand Filter and Screen
10			CONTINUED NEXT PAGE		<u> </u>					+						<u>+</u>		
DEF	ΡТН	SCALE					Í	G G	OL	DE	R						L	OGGED: AD/SS

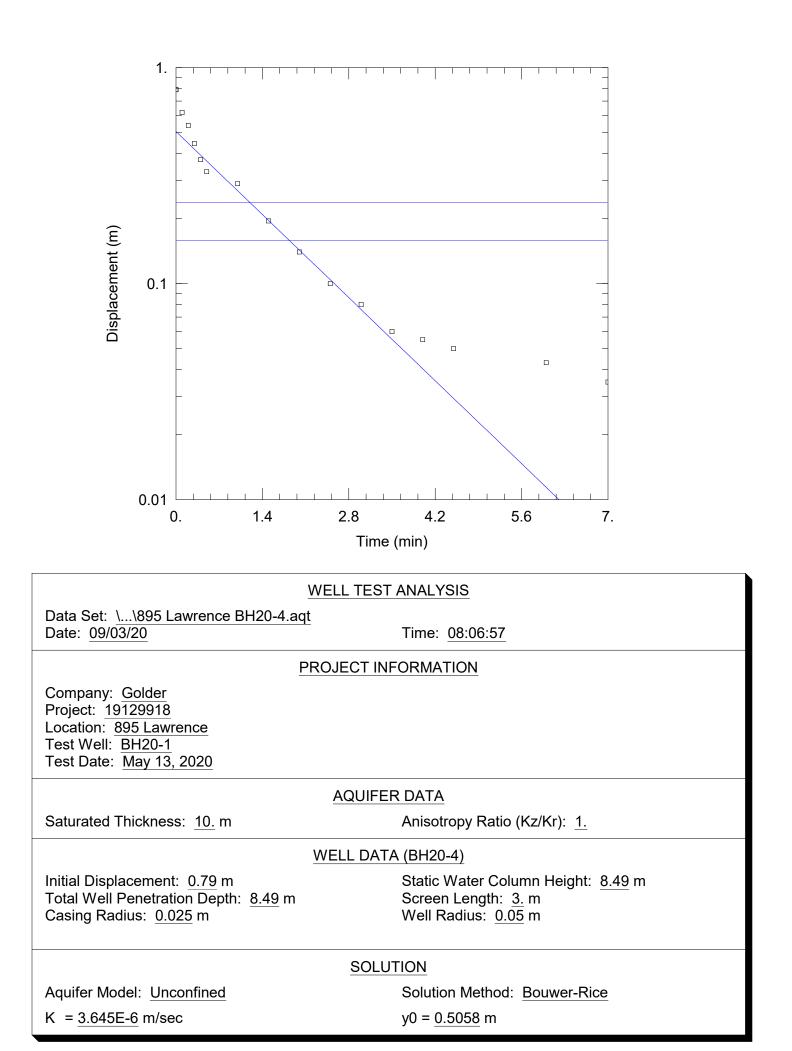
		CT: 19129918 (1000)	REC	ORI		OF BOREHOLE: B	H20-4		HEET 2 OF 2
L	OCAI	ION: See Figure 2		E	ORI	NG DATE: March 25, 2020		D	ATUM: Geodetic
	_	CPT HAMMER: MASS, 63kg; DROP, 760mm					HA HYDRAULIC CONDUCTIVITY,	MMER T	YPE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	ELEV. (m)	NUMBER TYPE	BLOWS/0.3m	20 40 60 80 20 40 60 80 SHEAR STRENGTH nat V. + Q Q. 0 0 20 40 60 80 20 40 60 80	k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 10	,	CONTINUED FROM PREVIOUS PAGE	133.47					1	
- - - - - - - - - - - - - - - - - - -		(ML) sandy SILT, some gravel; grey (TILL); non-cohesive, moist to wet, very dense (CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" th=""><th></th><th>10 SS</th><th>50/ 0.13</th><th></th><th>0</th><th></th><th>Silica Sand Filter and Screen</th></pl,>		10 SS	50/ 0.13		0		Silica Sand Filter and Screen
LAWERENCE AVE E 895.GPJ GALMIS GIJ 6/18/20 11111 111111111111111111111111111111	CME 75 Truck Mounted Rig	so minute a mode - was roady coming		11 SS 12 SS	50/ 0.07 50/ 0.13		o o		Bentonite
2		END OF BOREHOLE NOTE:	126.43 177.17		50/ 0.13 98/ 0.25		0		
)	1. Groundwater level measured in monitoring well as follows: Date Depth(m) Elev. (m) 13/05/2020 3.3 140.3 21/05/2020 3.3 140.3 05/06/2020 3.3 140.3 16/06/2020 3.3 140.3							
00 SH8-D 1	EPTH : 50	SCALE				GOLDER			DGGED: AD/SS IECKED: RA

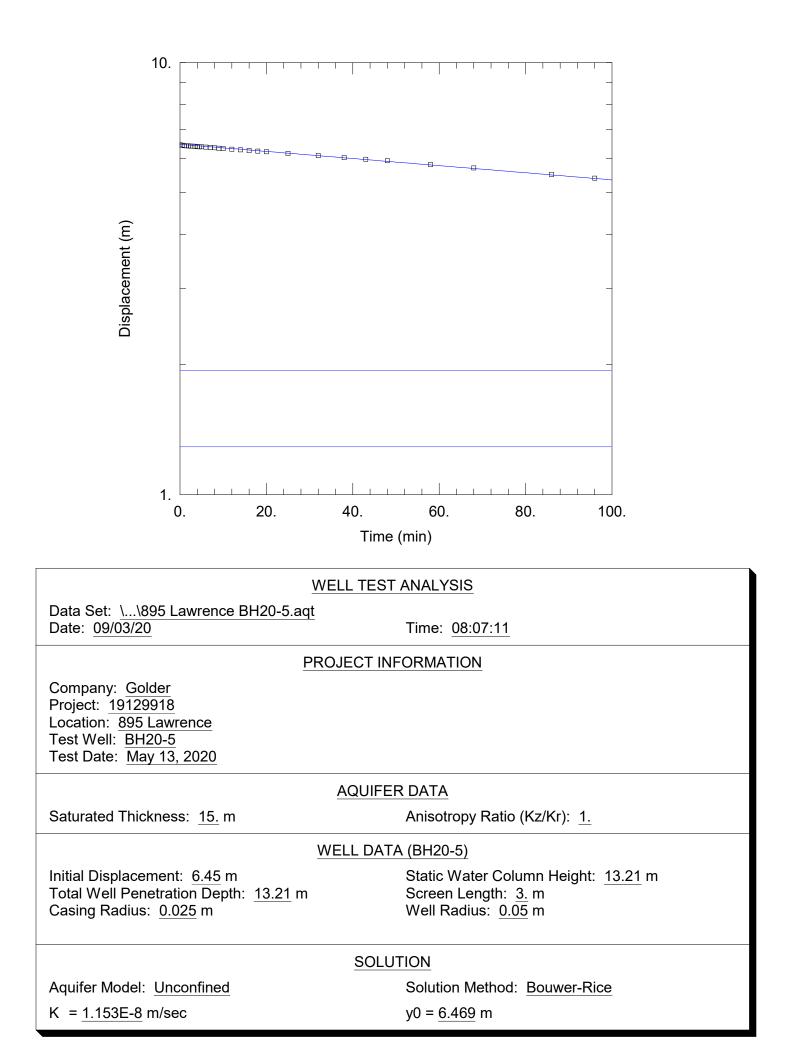
SPT	/DC	CPT HAMMER: MASS, 63kg; DROP, 760mn	ı			BO					HAMMER	TYPE: AUTOMATIC
	ДŎ	SOIL PROFILE			SAN	PLES	DYNAMIC PENETR RESISTANCE, BLC	ATION \ WS/0.3m \	HYDR	AULIC CONDUCTIV k, cm/s	^{πΥ,} Τυ	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	I Y PE BI OMS/0 3m	20 40 I I SHEAR STRENGTH Cu, kPa 20 40	60 80 1 nat V. + Q - 0 rem V. ⊕ U - 0 60 80	S w	0 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ VATER CONTENT PI p		PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE ASPHALT (~130 mm thick)		144.60 0.00								e
		FILL - (SP/GP) SAND and GRAVEL, some fines; brown; non-cohesive, moist,		0.13		SS 2						Concrete
1	Aurers	Compact (ML) sandy SILT, trace to some gravel; brown (TILL), oxidation stains, non-cohesive, moist, compact to very dense	<u> </u>			s 2						50 mm Diameter Monitoring Well
	mm I D. Hollow Stem	dense Internet of the second s	* * * * * * * *		3 5	SS 6			0			
2	140 r	- Boulders encountered between the depths of about 2.2 m and 2.3 m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	141.86	4 \$	ss 10)/ 5		0			
3	_	(SM/ML) SILTY SAND to sandy SILT, trace to some gravel; brown to grey; non-cohesive, moist to wet, dense to very dense		2.74	5 \$	5S 44	8			0		
4	CME 75 Truck Mounted Rig				6 5	85 0.2	/ 8			0		June 16, 2020
6	lia Tricone - Mud Rotary Drilling	Particular The control of the contr			7 5	ss 0.7	3			0		
7	08 mm	- Grey at a depth of about 7.0 m										
8		- Gravelly seam between the depths of about 7.6 m and 7.8 m			8 \$	50 0.7	/ 3			0	м	
9		(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td></td><td>136.07 8.53</td><td>9</td><td>ss 0.7</td><td>3</td><td></td><td>c</td><td></td><td></td><td></td></pl,>		136.07 8.53	9	ss 0.7	3		c			
10		CONTINUED NEXT PAGE			-+			-+	.+		+	


		ECT: 19129918 (1000)	REC	OR	DO	OF BOREHOLE:	BH20-5	S	HEET 2 OF 2
LC	DCAT	ION: See Figure 2			BOR	ING DATE: March 26, 2020		D	ATUM: Geodetic
SF	PT/DO	CPT HAMMER: MASS, 63kg; DROP, 760mm				r		HAMMER T	YPE: AUTOMATIC
ш Л	DOH.	SOIL PROFILE		SAMP	1	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	T J S	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT ETEATA (m) (m)	NUMBER TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + C Cu, kPa rem V. ⊕ U 20 40 60 80	2 - ● WATER CONTENT PERCENT Wp ← ───────────────────────────────────	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10	_	CONTINUED FROM PREVIOUS PAGE							
GTA-BHS 001 S/CLIENTSF/RST CAPITALTORONTO LAWERENCE AVE E 895.02 DATA/GINTTORONTO LAWERENCE AVE E 895.05U GALMIS.GOT 6/18/20 1 0 07 01 01 01 01 01 01 01 01 01 01 01 01 01	CME 75 Truck Mounted Rig	(CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel; grey (TILL); cohesive, w <pl, hard<="" th=""><th></th><th>10 SS 11 SS 12 SS 13 SS</th><th>50/ 0.13 50/ 0.05</th><th></th><th></th><th></th><th>Bentonite Seal</th></pl,>		10 SS 11 SS 12 SS 13 SS	50/ 0.13 50/ 0.05				Bentonite Seal
S:(CLIENTS/FIRST_CAPITAL/TO)									
DI A-BHS 001	EPTH : 50	I SCALE		<u> </u>		GOLDER			 OGGED: AD/SS IECKED: RA


July 13, 2022


19129918


APPENDIX D


K-Tests

APPENDIX E

Laboratory Data

CLIENT NAME: GOLDER ASSOCIATES LTD. **100 SCOTIA COURT** WHITBY, ON L1N8Y6 (905) 723-2727 **ATTENTION TO: Aaron Beard** PROJECT: 19129918 AGAT WORK ORDER: 22T913504 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager DATE REPORTED: Jul 13, 2022 PAGES (INCLUDING COVER): 14 VERSION*: 3

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes
VERSION 3: Version 3 supersedes work order 22T913504, Version 2, issued July 12, 2022. Filtered samples removed.
Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V3)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

E. Coli (Using MI Agar)

	SA	SAMPLE DESCRIPTION:			
	SAMPLE TYPE:			Water	
		DATE	SAMPLED:	2022-06-27	
				13:00	
Parameter	Unit	G/S	RDL	4029462	
Escherichia coli	CFU/100mL	200		0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Clty of Toronto Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4029462 Escherichia coli RDL = 1 CFU/100mL.

Apply 2 Eschenchia con RDE = 1 Cr C/ 100mE.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2022-07-13

AGAT WORK ORDER: 22T913504 PROJECT: 19129918

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

DATE RECEIVED: 2022-06-27						DATE REPORTED: 2022-07-13
			SAMPLE DE	SCRIPTION:	21-3	
			SA	MPLE TYPE:	Water	
			DAT	E SAMPLED:	2022-06-27	
Parameter	Unit	G / S: A	G / S: B	RDL	13:00 4029462	
Oil and Grease (animal/vegetable) in water	mg/L	150	070.0	0.5	<0.5[<a]< td=""><td></td></a]<>	
Oil and Grease (mineral) in water	mg/L	15		0.5	<0.5[<a]< td=""><td></td></a]<>	
Methylene Chloride	mg/L	2	0.0052	0.0003	<0.0003[<b]< td=""><td></td></b]<>	
trans-1,3-Dichloropropylene	mg/L	0.14	0.0056	0.0003	<0.0003[<b]< td=""><td></td></b]<>	
cis- 1,2-Dichloroethylene	mg/L	4	0.0056	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Chloroform	mg/L	0.04	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Benzene	mg/L	0.01	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Trichloroethylene	mg/L	0.4	0.0076	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Toluene	mg/L	0.016	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Tetrachloroethylene	mg/L	1	0.0044	0.0001	<0.0001[<b]< td=""><td></td></b]<>	
Ethylbenzene	mg/L	0.16	0.002	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
1,1,2,2-Tetrachloroethane	mg/L	1.4	0.017	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
1,2-Dichlorobenzene	mg/L	0.05	0.0056	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
1,4-Dichlorobenzene	mg/L	0.08	0.0068	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Xylenes (Total)	mg/L	1.4	0.0044	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
PCBs	mg/L	0.001	0.0004	0.0002	<0.0002[<b]< td=""><td></td></b]<>	
Pentachlorophenol	mg/L	0.005	0.002	0.0005	<0.0005[<b]< td=""><td></td></b]<>	
Di-n-butyl phthalate	mg/L	0.08	0.015	0.0005	<0.0005[<b]< td=""><td></td></b]<>	
3,3'-Dichlorobenzidine	mg/L	0.002	0.0008	0.0001	<0.0001[<b]< td=""><td></td></b]<>	
Bis(2-Ethylhexyl)phthalate	mg/L	0.012	0.0088	0.0005	<0.0005[<b]< td=""><td></td></b]<>	
Total PAHs	mg/L	0.005	0.002	0.0003	<0.0003[<b]< td=""><td></td></b]<>	
Nonylphenols	mg/L	0.02	0.001	0.001	<0.001[<b]< td=""><td></td></b]<>	
Nonylphenol Ethoxylates	mg/L	0.2	0.01	0.01	<0.01[<b]< td=""><td></td></b]<>	

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

Sewer Use - Toronto Sanitary and Combined Sewer Use By-law - Organic

DATE RECEIVED: 2022-06-27	,			DATE REPORTED: 2022-07-13
		SAMPLE DESCRIPTION:	21-3	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2022-06-27 13:00	
Surrogate	Unit	Acceptable Limits	4029462	
Toluene-d8	% Recovery	50-140	98	
4-Bromofluorobenzene	% Recovery	50-140	77	
Decachlorobiphenyl	%	50-140	82	
2,4,6-Tribromophenol	%	50-140	79	
2-Fluorophenol	%	50-140	85	
Chrysene-d12	%	50-140	84	
phenol-d6 surrogate	%	50-140	79	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to City of Toronto Sanitary and Combined Sewers Discharge, B Refers to City of Toronto Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4029462 Oil and Grease animal/vegetable is a calculated parameter. The calculated value is the difference between Total O&G and Mineral O&G.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Note: The result for Benzo(b+j)Flouranthene is the total of the Benzo(b)&(j)Flouranthene isomers because the isomers co-elute on the GC column.

Total PAHs is calculated as sum of Anthracene, Benzo(a)pyrene, Benzo(a)anthracene, Benzo(e)pyrene*, Benzo(b+j)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Dibenz(a, h)anthracene, Dibenzo(a,i)pyrene*, Dibenzo(a,j) Acridine*, 7H-Dibenzo(c,g)carbazole*, Fluoranthene, Indeno(1,2,3-cd)pyrene, Perylene, Phenanthrene and Pyrene.

*-not accredited parameters.

Nonylphenols is a calculated parameter. The calculated value is the sum of Nonylphenol (NP) and 4n-Nonylphenol (4n-NP).

Nonylphenol Ethoxylates is a calculated parameter. The calculated value is the sum of Nonylphenol Monoethoxylate (NP1EO) and Nonylphenol Diethoxylate (NP2EO). The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

/	1
Churg	
y s	
U	

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

BOD5										
DATE RECEIVED: 2022-06-27						DATE REPORTED: 2022-07-13				
			SAMPLE DE	SCRIPTION:	21-3					
	SAMPLE TYPE:									
	DATE SAMPLED:			SAMPLED:	2022-06-27 13:00					
Parameter	Unit	G / S: A	G / S: B	RDL	4029462					
Biochemical Oxygen Demand, Total	mg/L	15	300	2	<2[<a]< td=""><td></td></a]<>					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Clty of Toronto Storm Sewer Discharge, B Refers to City of Toronto Sanitary and Combined Sewers Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

AGAT WORK ORDER: 22T913504 PROJECT: 19129918 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

Sewer Use - Toronto Sanitary and Combined Sewer Use By-law - Inorganics

DATE RECEIVED: 2022-06-27						I	DATE REPORTED: 202
			SAMPLE DE	SCRIPTION:	21-3		
			SA	MPLE TYPE:	Water		
			DATI	E SAMPLED:	2022-06-27 13:00		
Parameter	Unit	G / S: A	G / S: B	RDL	4029462		
рН	pH Units	6.0-11.5	6.0-9.5	NA	7.87		
Fluoride	mg/L	10		0.05	<0.05[<a]< td=""><td></td><td></td></a]<>		
Total Phosphorus	mg/L	10	0.4	0.02	0.05[<b]< td=""><td></td><td></td></b]<>		
Cyanide, SAD	mg/L	2	0.02	0.002	<0.002[<b]< td=""><td></td><td></td></b]<>		
Phenols	mg/L	1.0	0.008	0.001	0.005[<b]< td=""><td></td><td></td></b]<>		
Chromium VI	mg/L	2	0.04	0.002	<0.002[<b]< td=""><td></td><td></td></b]<>		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to City of Toronto Sanitary and Combined Sewers Discharge, B Refers to City of Toronto Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 22T913504 **PROJECT: 19129918**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:895 Lawrence Ave E

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

		Sewer Use	e - Toronto	Sanitary an	d Combined Sewer L	Jse By-law - Inorganics (Filte	red)
DATE RECEIVED: 2022-06-27							DATE REPORTED: 2022-07-13
			SA	ESCRIPTION: MPLE TYPE: E SAMPLED:	21-3 Water 2022-06-27 13:00		
Parameter	Unit	G / S: A	G / S: B	RDL	4029514		
Total Phosphorus	mg/L	10	0.4	0.02	0.02[<b]< td=""><td></td><td></td></b]<>		
Total Suspended Solids	mg/L	350	15	10	<10[<b]< td=""><td></td><td></td></b]<>		
Total Aluminum	mg/L	50		0.010	<0.010[<a]< td=""><td></td><td></td></a]<>		
Total Antimony	mg/L	5		0.020	<0.020[<a]< td=""><td></td><td></td></a]<>		
Total Arsenic	mg/L	1	0.02	0.015	<0.015[<b]< td=""><td></td><td></td></b]<>		
Total Cadmium	mg/L	0.7	0.008	0.005	<0.005[<b]< td=""><td></td><td></td></b]<>		
Total Chromium	mg/L	4	0.08	0.020	<0.020[<b]< td=""><td></td><td></td></b]<>		
Total Cobalt	mg/L	5		0.010	<0.010[<a]< td=""><td></td><td></td></a]<>		
Total Copper	mg/L	2	0.04	0.020	<0.020[<b]< td=""><td></td><td></td></b]<>		
Total Lead	mg/L	1	0.12	0.020	<0.020[<b]< td=""><td></td><td></td></b]<>		
Total Manganese	mg/L	5	0.05	0.020	<0.020[<b]< td=""><td></td><td></td></b]<>		
Total Molybdenum	mg/L	5		0.020	<0.020[<a]< td=""><td></td><td></td></a]<>		
Total Nickel	mg/L	2	0.08	0.030	<0.030[<b]< td=""><td></td><td></td></b]<>		
Total Selenium	mg/L	1	0.02	0.002	0.003[<b]< td=""><td></td><td></td></b]<>		
Total Silver	mg/L	5	0.12	0.020	<0.020[<b]< td=""><td></td><td></td></b]<>		
Total Tin	mg/L	5		0.020	<0.020[<a]< td=""><td></td><td></td></a]<>		
Total Titanium	mg/L	5		0.010	<0.010[<a]< td=""><td></td><td></td></a]<>		
Total Zinc	mg/L	2	0.04	0.020	<0.020[<b]< td=""><td></td><td></td></b]<>		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to City of Toronto Sanitary and Combined Sewers Discharge, B Refers to City of Toronto Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

SAMPLING SITE:895 Lawrence Ave E

AGAT WORK ORDER: 22T913504

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

Microbiology Analysis															
RPT Date: Jul 13, 2022	DUPLICATE				REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		KE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		ld						Lower	Upper	,,	Lower	Upper		Lower	Upper
E. Coli (Using MI Agar)															

Escherichia coli 4029410 0 0 NA

Comments: NA - % RPD Not Applicable.

AGAT QUALITY ASSURANCE REPORT (V3)

Page 8 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

SAMPLING SITE:895 Lawrence Ave E

AGAT WORK ORDER: 22T913504 ATTENTION TO: Aaron Beard SAMPLED BY:A. Beard

Trace Organics Analysis

					9										
RPT Date: Jul 13, 2022			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	1 1 10	ptable nits	Recovery	1 1 1 1	eptable mits
		Ia					Value	Lower	Upper	_	Lower	Upper	-	Lower	Upper
Sewer Use - Toronto Sanitary a	and Combined	l Sewer U	Jse By-lav	v - Organi	с										
Methylene Chloride	4020287		<0.0003	<0.0003	NA	< 0.0003	105%	50%	140%	102%	60%	130%	87%	50%	140%
trans-1,3-Dichloropropylene	4020287		<0.0003	<0.0003	NA	< 0.0003	100%	50%	140%	97%	60%	130%	105%	50%	140%
cis- 1,2-Dichloroethylene	4020287		<0.0002	<0.0002	NA	< 0.0002	112%	60%	130%	85%	60%	130%	119%	60%	130%
Chloroform	4020287		<0.0002	<0.0002	NA	< 0.0002	103%	50%	140%	85%	60%	130%	97%	50%	140%
Benzene	4020287		<0.0002	<0.0002	NA	< 0.0002	88%	50%	140%	71%	60%	130%	100%	50%	140%
Trichloroethylene	4020287		<0.0002	<0.0002	NA	< 0.0002	106%	50%	140%	94%	60%	130%	75%	50%	140%
Toluene	4020287		<0.0002	<0.0002	NA	< 0.0002	70%	50%	140%	83%	60%	130%	89%	50%	140%
Tetrachloroethylene	4020287		<0.0001	<0.0001	NA	< 0.0001	75%	50%	140%	73%	60%	130%	100%	50%	140%
Ethylbenzene	4020287		<0.0002	<0.0002	NA	< 0.0002	85%	50%	140%	89%	60%	130%	89%	50%	140%
1,1,2,2-Tetrachloroethane	4020287		<0.0002	<0.0002	NA	< 0.0002	106%	50%	140%	92%	60%	130%	111%	50%	140%
1,2-Dichlorobenzene	4020287		<0.0002	<0.0002	NA	< 0.0002	97%	50%	140%	92%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene	4020287		<0.0002	<0.0002	NA	< 0.0002	98%	50%	140%	92%	60%	130%	101%	50%	140%
PCBs	4038015		< 0.0002	< 0.0002	NA	< 0.0002	104%	50%	140%	98%	50%	140%	77%	50%	140%
Pentachlorophenol	3983715		< 0.0005	< 0.0005	NA	< 0.0005	85%	50%	140%	79%	50%	140%	84%	50%	140%
Di-n-butyl phthalate	3983715		< 0.0005	< 0.0005	NA	< 0.0005	74%	50%	140%	85%	50%	140%	79%	50%	140%
3,3'-Dichlorobenzidine	3983715		< 0.0001	< 0.0001	NA	< 0.0001	79%	30%	130%	89%	30%	130%	86%	30%	130%
Bis(2-Ethylhexyl)phthalate	3983715		< 0.0005	< 0.0005	NA	< 0.0005	85%	50%	140%	78%	50%	140%	85%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT QUALITY ASSURANCE REPORT (V3)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 9 of 14

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

SAMPLING SITE:895 Lawrence Ave E

AGAT WORK ORDER: 22T913504

ATTENTION TO: Aaron Beard

SAMPLED BY:A. Beard

				Wate	er Ar	nalysi	is								
RPT Date: Jul 13, 2022		C	DUPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT		KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable nits
		ld					Value	Lower	Upper		Lower	Upper	-	Lower	Upper
Sewer Use - Toronto Sanitary	and Combined	Sewer L	Jse By-lav	v - Inorgar	nics										
рН	4028923		7.58	7.71	1.7%	NA	101%	90%	110%						
Fluoride	4036006		<0.05	<0.05	NA	< 0.05	113%	70%	130%	108%	80%	120%	94%	70%	130%
Total Phosphorus	4037272		0.10	0.10	0.0%	< 0.02	99%	70%	130%	98%	80%	120%	NA	70%	130%
Cyanide, SAD	4029462 4	029462	<0.002	<0.002	NA	< 0.002	102%	70%	130%	105%	80%	120%	106%	70%	130%
Phenols	4033548		0.001	<0.001	NA	< 0.001	102%	90%	110%	102%	90%	110%	107%	80%	120%
Chromium VI	4026830		<0.002	<0.002	NA	< 0.002	102%	70%	130%	105%	80%	120%	107%	70%	130%
Sewer Use - Toronto Sanitary	and Combined	Sewer L	lse By-lav	v - Inorgar	nics (Filte	ered)									
Total Phosphorus	4037272		0.10	0.10	0.0%	< 0.02	99%	70%	130%	98%	80%	120%	NA	70%	130%
Total Suspended Solids	4032212		25	24	NA	< 10	102%	80%	120%						
Total Aluminum	4029823		0.056	0.051	NA	0.012	109%	70%	130%	101%	80%	120%	116%	70%	130%
Total Antimony	4029823		<0.020	<0.020	NA	< 0.020	100%	70%	130%	94%	80%	120%	101%	70%	130%
Total Arsenic	4029823		<0.015	<0.015	NA	< 0.015	95%	70%	130%	86%	80%	120%	91%	70%	130%
Total Cadmium	4029823		<0.005	<0.005	NA	< 0.005	100%	70%	130%	95%	80%	120%	97%	70%	130%
Total Chromium	4029823		<0.020	<0.020	NA	< 0.020	102%	70%	130%	93%	80%	120%	96%	70%	130%
Total Cobalt	4029823		<0.010	<0.010	NA	< 0.010	101%	70%	130%	87%	80%	120%	97%	70%	130%
Total Copper	4029823		0.024	0.025	NA	< 0.020	102%	70%	130%	91%	80%	120%	95%	70%	130%
Total Lead	4029823		<0.020	<0.020	NA	< 0.020	107%	70%	130%	95%	80%	120%	100%	70%	130%
Total Manganese	4029823		<0.020	<0.020	NA	< 0.020	101%	70%	130%	89%	80%	120%	98%	70%	130%
Total Molybdenum	4029823		0.034	0.039	NA	< 0.020	100%	70%	130%	99%	80%	120%	103%	70%	130%
Total Nickel	4029823		<0.030	<0.030	NA	< 0.030	102%	70%	130%	86%	80%	120%	95%	70%	130%
Total Selenium	4029823		<0.002	<0.002	NA	< 0.002	98%	70%	130%	94%	80%	120%	94%	70%	130%
Total Silver	4029823		<0.020	<0.020	NA	< 0.020	98%	70%	130%	86%	80%	120%	94%	70%	130%
Total Tin	4029823		<0.020	<0.020	NA	< 0.020	101%	70%	130%	92%	80%	120%	99%	70%	130%
Total Titanium	4029823		<0.010	<0.010	NA	< 0.010	107%	70%	130%	84%	80%	120%	89%	70%	130%
Total Zinc	4029823		<0.020	<0.020	NA	< 0.020	100%	70%	130%	94%	80%	120%	92%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

BOD5

Biochemical Oxygen Demand, Total 4029462 <2 <2 NA <2 88% 70% 130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Page 10 of 14

AGAT QUALITY ASSURANCE REPORT (V3)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES	_TD.	AGAT WORK ORDER: 22T913504									
PROJECT: 19129918		ATTENTION TO: Aaron Beard									
SAMPLING SITE:895 Lawrence Ave E		SAMPLED BY:A. Beard									
PARAMETER	PARAMETER AGAT S.O.P		ANALYTICAL TECHNIQUE								
Microbiology Analysis											
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration								

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

AGAT WORK ORDER: 22T913504 ATTENTION TO: Aaron Beard

SAMPLING SITE:895 Lawrence Ave E

SAMPLED BY:A. Beard

SAMPLING SITE:095 Lawrence Ave E	-	SAMPLED BT:A.							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis									
Oil and Grease (animal/vegetable) in water	VOL-91-5011	EPA SW-846 1664A & SM 5520	GRAVIMETRIC						
Oil and Grease (mineral) in water	VOL-91-5011	EPA SW-846 1664A & SM 5520	GRAVIMETRIC						
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
trans-1,3-Dichloropropylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	CALCULATION						
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
PCBs	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD						
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW846 3510C & 8082A	GC/ECD						
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
Di-n-butyl phthalate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
3,3'-Dichlorobenzidine	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
Total PAHs	ORG-91-5114	modified from EPA 3510C and EPA 8270E	CALCULATION						
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
Chrysene-d12	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
Nonylphenols	ORG-91-5122	modified ASTM D7485-16	CALCULATION						

AGAT METHOD SUMMARY (V3)

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 19129918

AGAT WORK ORDER: 22T913504

ATTENTION TO: Aaron Beard

SAMPLING	SITE:895	Lawrence	Ave E

SAMPLED BY:A. Beard

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Nonylphenol Ethoxylates	ORG-91-5122	modified ASTM D7485-16	CALCULATION
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Cyanide, SAD	INOR-93-6051	modified from MOECC E3015; SM 4500-CN- A, B, & C	TECHNICON AUTO ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

AGA1	atori	es Ph: 9		ssissaug 2 5100	a, Ont Fax: 9		4Z 1Y2 2.5122		Cooler Q	der #: Quantity:	22	T	.91 en	in the second	504	1	
Report Information: Company: Golder WSP Contact: Auton Baard Address: /oo Scotra (rt Phone: 226-220-7520 Fax: Reports to be sent to: 1. Email: 2. Email: Speed - Ai. @ golder.com			e use Drinking Water Chain of Custody Form (potable water consumed by humans) Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Tableindicate One Ind/Com Resy.Park Agriculture Soil Texture (check One) Coarse Fine							Arrival Temperatures: 5.05.714.6 Custody See Intact: Yes No N/ Notes: 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Next Business OR Date Required (Rush Surcharges May Apply):							□N/A
Project Information: Project: 1912.9918 Site Location: 895 Lowience Auc Sampled By: A. Bewick	đ	Re	s this submission for a cord of Site Condition?	Cert	port G tificati Yes	e of A		sis	10	1.1.1	TAT is exc	lusive	of wee	ekend	s and s	for rush TA tatutory hol	lidays
AGAT Quote #: PO: Please note: If quotation number is not provided, client to Invoice Information: Company: Gratiler Contact: Address: Synd Ali Address: Email: I on State Contact: Date	Bill To Same: Yes X No	В	mple Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC		Metals - L CrVI, L HB, L HWSB & 8	2011	g		Aroclors Landfill Disposal Characterization TCLP: TCLP: _ M&IUVOCs _ DABNs _ D&(a)P PCBs 작품	Concernance of the local division of the loc	Excess Sois Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture 🗆 Sulphide 🗔		-Fille		Potentially Hazardous or High Concentration (Y/N)
Sample Identification Sampled	Sampled Container	s Matrix	Special Instructions	Y/N	Met	Metals	PAHS	PCBs	NOC	Aroclors Landfill C TCLP:	Exce	Exce pH, I	Corr	X 5	X TSS		Poter
	AM AM PM AM PM AM PM AM PM AM PM					100000000000000000000000000000000000000											
Samples Relinquished By (Print Name and Sign):	AM Date ZŦ/sĹ/22 Date	9.00	Samples Received by (Print Name and Samt	fl	×	5.		Date		Tirr	_			Pag	122 ge _1_		7:0

GOLDER

golder.com

HYDROLOGICAL REVIEW SUMMARY

The form is to be completed by the Professional that prepared the Hydrological Review. Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

Refer to the Terms of Reference, Hydrological Review: Link to Terms of Reference Hydrological Review

For City Staff Use Only:	
Name of ECS Case Manager (Please print)	
Date Review Summary provided to to TW, EM&P	

IF ANY OF THE REQUIREMENTS LISTED BELOW HAVE NOT BEEN INLCUDED IN THE HYDROLOGICAL REVIEW, THE REVIEW WILL BE CONSIDERED INCOMPLETE.

THE GREY SHADED BOXES WILL REQUIRE A CONSISTANCY CHECK BY THE ECS CASE MANAGER.

Summary of Key Information:

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Site Address	895 Lawrence Avenue East, North York, Ontario	Page 1	
Postal Code	M3C 3L2		
Property Owner (on request for comments memo)	First Capital Asset Management LP	Page 1, Sec 1	
Proposed description of the project (if applicable) (point towers, number of podiums)	Two towers (22 and 17 storeys) connected by a 6-storey podium	Page 1, Sec 1.1	
Land Use	Commercial and residental	Page 1, Sec 1.1	
(ex. commercial, residential, mixed, institutional, industrial)			
Number of below grade levels for the proposed	2	Page 1, Sec 1.1	
structure			
HYDROLOGI	CAL REVIEW INFORMATION		
Date Hydrological Review was prepared:	July 13, 2022		
Who Performed the Hydrological Review (Consulting Firm)	Golder Associates Ltd.	Page 1	
Name of Author of Hydrological Review	David Dillon and Mark Swallow	Page 8	

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Check the directories on the website for Professional Geoscientists and/or Professional Engineers of Ontario been checked to ensure that the Hydrological Report has been prepared by a qualified person who is a licensed Professional Geoscientist as set out in the Professional Geoscientist Act of Ontario or a Professional Engineer? PEO: <u>Professional Engineers of Ontario</u> APGO: <u>Association of Professional Geoscientists of Ontario</u>		N/A	
 Has the Hydrological Review been prepared in accordance with all the following: Ontario Water Resources Act Ontario Regulation 387/04 Toronto Municipal Code Chapter 681-Sewers 	Yes		
		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) with safety factor included	172 m ³ /day What safety factor was used? 2 (applied to groundwater influx)	Page 6, Sect 3.3	
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) without safety factor included	158 m ³ /day	Page 6, Sect 3.3	
Total Volume (L/day) Long Term drainage of groundwater (from foundation drainage, weeping tiles, sub slab drainage) with safety factor included If the development is part of a multiple tower complex, include total volume for each separate tower	0 m³/day What safety factor was used? 0	Page 6, Sect 3.4	
List the nearest surface water (river, creek, lake)	Willet Creek, 1km west	Page 1, Sect 1.1.1	

SITE INFORMATION		SITE INFORMATION Page # & Section # of Review	
Lowest basement elevation	2 basement levels, elevations not available	Page 4, Sect 3	
Foundation elevation	1391. masl	Page 4, Sect 3	
Ground elevation	143 to 146 masl	Page 1, Section 1.1.1	
STUDY AREA MAP		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
Study area map(s) have been included in the report.	x Yes	Figures	N/A
Study area map(s) been prepared according to the Hydrological Review Terms of Reference.	x Yes	Figures	N/A
WATER LEVEL AND WELLS		Page # & Section # of every occurrence	Review Includes this Information (City Staff Initial)

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
		in the Review	
The groundwater level has been monitored using all wells located on site (within property boundary).	Yes	Table A	
The static water level measurements have been monitored at all monitoring wells for a minimum of 3 months with samples taken every 2 weeks for a minimum of 6 samples.	Yes	Table A	
The intent is for the qualified professional to use professional judgement to estimate the seasonally high groundwater level.			
All water levels in the wells have been measured with respect to masl.	Yes	Table A	
A table of geology/soil stratigraphy for the property has been included.	Yes	Page 3, Table 1	
GEOLOGY AND PHYSICAL HYDROLOGY		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)
The review has made reference to the soil materials including thickness, composition and texture, and bedrock environments.	Yes	Page 3, Sect 2.2	
Key aquifers and the site's proximity to nearby surface water has been identified.	⊖ Yes	Page 1, Sect 1.1.1 Page 3, Sect 2.2	N/A

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
PUMP TEST/SLUG TEST/DRAWDOWN ANALYSIS		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
A summary of the pumping test data and analysis is included in the review.	n/a		
The pump test been carried out for at least 24 hours if possible. If not, has a slug test been conducted? Have the monitoring well(s) have been monitored	Yes	Page 4, Sect 2.4	
using digital devices? If yes how frequently?			
If a slug or pump test has been conducted has the static groundwater level been monitored at all monitoring well(s) multiple times to measure recovery? -prior to the slug or pumping test(s)?	○ Yes	Appendix C	N/A
-post slug or pumping test(s)? The above noted slug or pump tests have been included in the report.	⊖ Yes	Appendix C	
WATER QUALITY		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
The report includes baseline water quality samples from a laboratory. The water quality must be analyzed for all parameters listed in Tables 1 and 2 of Chapter 681 Sewers of the Toronto Municipal Code (found in Appendix A) and the samples must have to be taken unfiltered within 9 months of the date of submission.	Yes	Appendix D	
The water quality data templates in Appendix A have been completed for each sample taken for both sanitary/combined and storm sewer limits.	For sanitary discharge- See the sanitary/combined sewer parameter limit template		
	For storm discharge- See the storm sewer parameter limit template		
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the sanitary/combined Bylaw limits If there are any sample parameter Exceedances the groundwater can't be discharged as is.		Page 4, Sect 2.5	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the storm Bylaw limits.			
If there are any sample parameter exceedances the groundwater can't be discharged as is.			
The water quality samples have been analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and/or Canadian Association for Laboratory Accreditation.	⊖ Yes	Appendix D	N/A

SITE INFO	PRMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
List of Canadian accredited laboratories: Standards Council of Canada			
A chain of custody record for the samples is included with the report.	Yes	Appendix D	
Has the chain of custody reference any filtered sample? If yes, the report has to be amended and re-submitted to include only non-filtered samples.		Appendix D	
List any of the sample parameters that exceed the Bylaw limits with the reporting detection limit (RDL) included.		Appendix D	
A true copy of the Certificate of Analysis report, is included with the report.		Appendix D	
EVALUATION OF IMPACT		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
Does the report recommend a back-up system or relief safety valve(s)?	⊖Yes x No		
Does the associated Geotechnical report recommend a back-up system or relief safety valve(s)?	○ Yes x No		

The taking and discharging of groundwater on site	x Yes	N/A
has been analyzed to ensure that no negative		

HYDROLOGICAL REVIEW SUMMARY

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
impacts will occur to: the City sewage works in		Page 7, Sect 4	
terms of quality and quantity (including existing			
infrastructure), the natural environment, and			
settlement issues.			
Has it been determined that there will be a	⊖ Yes		N/A
negative impact to the natural environment, City	If yes, identify impact:		
sewage works, or surrounding properties has the			
study identified the following: the extent of the	Νο		
negative impact, the detail of the precondition			
state of all the infrastructure, City sewage works,			
and natural environment within the effected zone			
and the proposed remediation and monitoring			
plan?			

Summary of Additional Information and Key Items (if applicable):

HYDROLOGICAL REVIEW SUMMARY

Appendix A:

SANITARY/COMBINED

Sample Location:

Inorganics		Sample Result	Sample Result with upper RDL included	
Parameter	<u>mg/L</u>			<u>ug/L</u>
BOD	300	<2	2	300,000
Fluoride	10	<0.05	<0.05, 0.05	10,000
TKN	100	0.37	0.37, 0.10	100,000
pH	6.0 - 11.5	7.87	7.87, NA	6.0 - 11.5
Phenolics 4AAP	1	0.005	0.005, 0.001	1,000
TSS	350	<10	<10, 10	350,000
Total Cyanide	2	<0.002	<0.002, 0.002	2,000
Metals				
Chromium Hexavalent	2	<0.002	<0.002, 0.002	2,000
Mercury	0.01	<0.0002	<0.0002, 0.0002	10
Total Aluminum	50	<0.010	<0.010, 0.010	50,000
Total Antimony	5	<0.020	<0.020, 0.020	5,000
Total Arsenic	1	<0.015	<0.015, 0.015	1,000
Total Cadmium	0.7	<0.005	<0.005, 0.005	700
Total Chromium	4	<0.020	<0.020, 0.020	4,000
Total Cobalt	5	<0.010	0.010, 0.010	5,000
Total Copper	2	<0.020	<0.020, 0.020	2,000
Total Lead	1	<0.020	<0.020, 0.020	1,000
Total Manganese	5	<0.020	<0.020, 0.020	5,000
Total Molybdenum	5	<0.020	<0.020, 0.020	5,000
Total Nickel	2	<0.030	<0.030, 0.030	2,000
Total Phosphorus	10	0.02	0.02, 0.02	10,000
Total Selenium	1	0.003	0.003, 0.002	1,000
Total Silver	5	<0.020	<0.020, 0.020	5,000
Total Tin	5	<0.020	<0.020, 0.020	5,000
Total Titanium	5	<0.010	0.010, 0.010	5,000
Total Zinc	2	<0.020	<0.020, 0.020	2,000
Petroleum Hydrocarbons				
Animal/Vegetable Oil & Grease	150	<0.5	<0.5, 0.5	150,000
Mineral/Synthetic Oil & Grease	15	<0.5	<0.5, 0.5	15,000

DA TORONTO

August 2018

HYDROLOGICAL REVIEW SUMMARY

Volatile Organics		Sample Result	Sample Result with upper RDL included	
Parameter	<u>mg/L</u>			<u>ug/L</u>
Benzene	0.01	< 0.0002	<0.0002, 0.0002	10
Chloroform	0.04	< 0.0002	<0.0002, 0.0002	40
1,2-Dichlorobenzene	0.05	<0.0002	<0.0002, 0.0002	50
1,4-Dichlorobenzene	0.08	<0.0002	<0.0002, 0.0001	80
Cis-1,2-Dichloroethylene	4	<0.0002	<0.0002, 0.0002	4,000
Trans-1,3-Dichloropropylene	0.14	< 0.0003	<0.0003, 0.0003	140
Ethyl Benzene	0.16	<0.0002	<0.0002, 0.0001	160
Methylene Chloride	2	< 0.0003	<0.0003, 0.0003	2,000
1,1,2,2-Tetrachloroethane	1.4	<0.0002	<0.0002, 0.0002	1,400
Tetrachloroethylene	1	<0.0001	<0.0001, 0.0001	1,000
Toluene	0.016	<0.0002	<0.0002, 0.0002	16
Trichloroethylene	0.4	<0.0002	<0.0002, 0.0002	400
Total Xylenes	1.4	0.0002	0.0002, 0.0002	1,400
Semi-Volatile Organics				
Di-n-butyl Phthalate	0.08	<0.0005	<0.0005, 0.0005	80
Bis (2-ethylhexyl) Phthalate	0.012	<0.0005	<0.0005, 0.0005	12
3,3'-Dichlorobenzidine	0.002	< 0.0005	<0.0005, 0.0005	2
Pentachlorophenol	0.005	<0.0005	<0.0005, 0.0005	5
Total PAHs	0.005	<0.0003	<0.0003, 0.0003	5
Misc Parameters				
Nonylphenols	0.02	<0.001	<0.001, 0.001	20
Nonylphenol Ethoxylates	0.2	<0.01	<0.01, 0.01	200

Sample Collected: Temperature:

M TORONTO

August 2018

STORM	Sample Location:			
Inorganics		Sample Result	Sample Result with upper RDL included	
Parameter	mg/L			ug/L
pН	6.0 - 9.5	7.87	7.87, NA	
BOD	15	<2	<2, 2	15,000
Phenolics 4AAP	0.008	0.005	0.005, 0.001	8
TSS	15	<10	<10, 10	15,000
Total Cyanide	0.02	<0.002	<0.002, 0.002	20
Metals				
Total Arsenic	0.02	<0.015	<0.015, 0.015	20
Total Cadmium	0.008	<0.005	<0.005, 0.005	8
Total Chromium	0.08	<0.020	<0.020, 0.020	80
Chromium Hexavalent	0.04	<0.002	<0.002, 0.002	40
Total Copper	0.04	<0.020	<0.020, 0.020	40
Total Lead	0.12	<0.020	<0.020, 0.020	120
Total Manganese	0.05	<0.20	<0.20, 0.020	50
Total Mercury	0.0004	<0.0002	<0.0002, 0.0002	0.4
Total Nickel	0.08	<0.030	<0.030, 0.030	80
Total Phosphorus	0.4	0.05	0.05, 0.02	400
Total Selenium	0.02	<0.003	<0.003, 0.002	20
Total Silver	0.12	<0.020	<0.020, 0.020	120
Total Zinc	0.04	<0.020	<0.020, 0.020	40
Microbiology				
E.coli	200		0	200,000
Volatile Organics				
Parameter	mg/L			ug/L
Benzene	0.002	<0.0002	<0.0002, 0.0002	2
Chloroform	0.002	<0.0002	<0.0002, 0.0002	2
1,2-Dichlorobenzene	0.0056	<0.0002	<0.0002, 0.0002	6
1,4-Dichlorobenzene	0.0068	<0.0002	<0.0002, 0.0002	7
Cis-1,2-Dichloroethylene	0.0056	<0.0002	<0.0002, 0.0002	6
Trans-1,3-Dichloropropylene	0.0056	<0.0003	<0.0003, 0.0003	6
Ethyl Benzene	0.002	<0.0002	<0.0002, 0.0001	2
Methylene Chloride	0.0052	<0.0003	<0.0003, 0.0003	5
1,1,2,2-Tetrachloroethane	0.017	<0.0002	<0.0002, 0.0002	17
Tetrachloroethylene	0.0044	<0.0001	<0.0001, 0.0001	4
Toluene	0.002	<0.0002	<0.0002, 0.0002	2
Trichloroethylene	0.0076	<0.0002	<0.0002, 0.0002	8
Total Xylenes	0.0044	<0.0002	0.0002, 0.0002	4

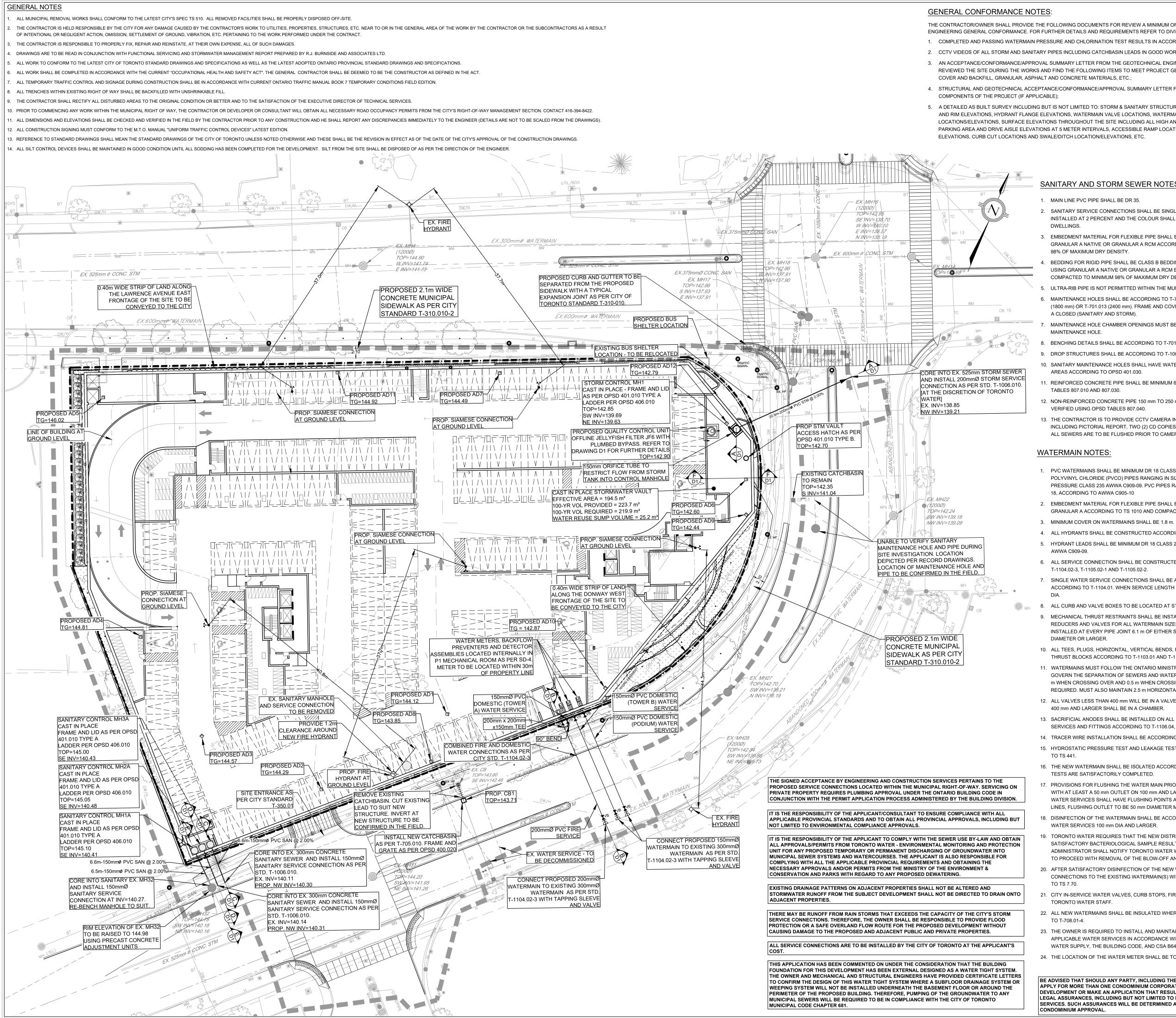
M TORONTO

August 2018

HYDROLOGICAL REVIEW SUMMARY

Semi-Volatile Organics		Sample Result	Sample Result with upper RDL included	
Di-n-butyl Phthalate	0.015	<0.0005	<0.0005, 0.0005	5
Bis (2-ethylhexyl) Phthalate	0.0088	<0.0005	<0.0005, 0.0005	8.8
3,3'-Dichlorobenzidine	0.0008	<0.0001	<0.0001, 0.0001	0.8
Pentachlorophenol	0.002	<0.0005	<0.0005, 0.0005	2
Total PAHs	0.002	<0.0003	<0.0003, 0.0003	2
PCBs	0.0004	<0.0002	<0.0002, 0.0002	0.4
Misc Parameters				
Nonylphenols	0.001	<0.001	<0.001, 0.001	1
Nonylphenol Ethoxylates	0.01	<0.001	<0.001, 0.001	10

Sample Collected: Temperature:


Consulting Firm that prepared Hydrological Report:

Golder Associates Ltd.

Qualified Professional who completed the report summary:	David Dillon, P.Geo		
	Print Name	October 2, 2020	
Qualified Professional who completed the report summary:	here	PRACTISING MEMBER 2261	
	Signature	Date & Stamp	

Drawings

Plotted by:JMcGihon Paper size: ARCH D (24.00 X 36.00 Inches) Plot table: Rjb Full Scale-pickering 2013.ctb

THE CONTRACTOR/OWNER SHALL PROVIDE THE FOLLOWING DOCUMENTS FOR REVIEW A MINIMUM OF (14) DAYS PRIOR TO REQUIRING CIVIL ENGINEERING GENERAL CONFORMANCE. FOR FURTHER DETAILS AND REQUIREMENTS REFER TO DIVISION SPECIFICATIONS IF APPLICABLE.

1. COMPLETED AND PASSING WATERMAIN PRESSURE AND CHLORINATION TEST RESULTS IN ACCORDANCE WITH LOCAL MUNICIPAL STANDARDS; 2. CCTV VIDEOS OF ALL STORM AND SANITARY PIPES INCLUDING CATCHBASIN LEADS IN GOOD WORKING ORDER:

3. AN ACCEPTANCE/CONFORMANCE/APPROVAL SUMMARY LETTER FROM THE GEOTECHNICAL ENGINEER OF RECORD STATING THAT THEY HAVE REVIEWED THE SITE DURING THE WORKS AND FIND THE FOLLOWING ITEMS TO MEET PROJECT GEOTECHNICAL REQUIREMENTS: PIPE BEDDING,

4. STRUCTURAL AND GEOTECHNICAL ACCEPTANCE/CONFORMANCE/APPROVAL SUMMARY LETTER FOR ALL RETAINING WALLS AND STRUCTURAL

5. A DETAILED AS BUILT SURVEY INCLUDING BUT IS NOT LIMITED TO: STORM & SANITARY STRUCTURE LOCATIONS/ELEVATIONS, PIPE INVERTS/LOCATION AND RIM ELEVATIONS. HYDRANT FLANGE ELEVATIONS. WATERMAIN VALVE LOCATIONS. WATERMAIN PIPE LOCATION/ELEVATIONS. HYDRO AND GAS LOCATIONS/ELEVATIONS, SURFACE ELEVATIONS THROUGHOUT THE SITE INCLUDING ALL HIGH AND LOW POINTS INDICATED ON THE GRADING PLAN, PARKING AREA AND DRIVE AISLE ELEVATIONS AT 5 METER INTERVALS, ACCESSIBLE RAMP LOCATIONS, TOP AND BOTTOM OF RETAINING WALL

SANITARY AND STORM SEWER NOTES

1. MAIN LINE PVC PIPE SHALL BE DR 35.

2. SANITARY SERVICE CONNECTIONS SHALL BE SINGLE, 150 mm DIAMETER MINIMUM, PVC DR 28 INSTALLED AT 2 PERCENT AND THE COLOUR SHALL BE GREEN, FOR SINGLE RESIDENTIAL DWELLINGS.

3. EMBEDMENT MATERIAL FOR FLEXIBLE PIPE SHALL BE ACCORDING TO OPSD 802.010 AND USING GRANULAR A NATIVE OR GRANULAR A RCM ACCORDING TO TS 1010 AND COMPACTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY

4. BEDDING FOR RIGID PIPE SHALL BE CLASS B BEDDING MATERIAL ACCORDING TO OPSD 802.031 AND USING GRANULAR A NATIVE OR GRANULAR A RCM BEDDING MATERIAL ACCORDING TO TS 1010 AND COMPACTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY

5. ULTRA-RIB PIPE IS NOT PERMITTED WITHIN THE MUNICIPAL RIGHT-OF-WAY.

6. MAINTENANCE HOLES SHALL BE ACCORDING TO T-701.010 (1200 mm), T-710.011 (1500 mm), T-701.012-1 (1800 mm) OR T-701.013 (2400 mm). FRAME AND COVER SHALL BE ACCORDING TO OPSD 401.010 TYPE A CLOSED (SANITARY AND STORM).

MAINTENANCE HOLE CHAMBER OPENINGS MUST BE LOCATED ON THE UPSTREAM SIDE OF THE MAINTENANCE HOLE.

8. BENCHING DETAILS SHALL BE ACCORDING TO T-701.021 OR AS SHOWN ON THE DRAWINGS.

9. DROP STRUCTURES SHALL BE ACCORDING TO T-1003.01 (EXTERNAL) AND T-1003.01-2 (INTERNAL) 10. SANITARY MAINTENANCE HOLES SHALL HAVE WATERTIGHT FRAMES AND COVERS IN PONDING

AREAS ACCORDING TO OPSD 401.030. 11. REINFORCED CONCRETE PIPE SHALL BE MINIMUM 65-D. HEIGHT OF FILL TO BE VERIFIED USING OPSD TABLES 807.010 AND 807.030.

12. NON-REINFORCED CONCRETE PIPE 150 mm TO 250 mm SHALL BE CLASS 3. HEIGHT OF FILL TO BE VERIFIED USING OPSD TABLES 807.040.

13. THE CONTRACTOR IS TO PROVIDE CCTV CAMERA INSPECTIONS OF ALL SANITARY SEWERS, INCLUDING PICTORIAL REPORT, TWO (2) CD COPIES IN A FORMAT SATISFACTORY TO THE ENGINEER. ALL SEWERS ARE TO BE FLUSHED PRIOR TO CAMERA INSPECTION.

WATERMAIN NOTES

1. PVC WATERMAINS SHALL BE MINIMUM DR 18 CLASS 235 (AWWA) C900-07 OR MOLECULARLY ORIENTED POLYVINYL CHLORIDE (PVCO) PIPES RANGING IN SIZE FROM 100 mm TO 300 mm IN DIAMETER PRESSURE CLASS 235 AWWA C909-09. PVC PIPES RANGINS IN SIZE FROM PRESSURE RATING 235, DR 18, ACCORDING TO AWWA C905-10

2. EMBEDMENT MATERIAL FOR FLEXIBLE PIPE SHALL BE ACCORDING TO OPSD 802.010 AND USING GRANULAR A ACCORDING TO TS 1010 AND COMPACTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.

ALL HYDRANTS SHALL BE CONSTRUCTED ACCORDING TO T-1105.01

5. HYDRANT LEADS SHALL BE MINIMUM DR 18 CLASS 235 (AWWA) C900-07 OR PRESSURE CLASS 235 AWWA C909-09

6. ALL SERVICE CONNECTION SHALL BE CONSTRUCTED ACCORDING TO T-1104.01, T-1104.02-1, T-1104.02-3, T-1105.02-1 AND T-1105.02-2.

7. SINGLE WATER SERVICE CONNECTIONS SHALL BE A MINIMUM OF 19 mm DIA. TYPE "K" SOFT COPPER ACCORDING TO T-1104.01. WHEN SERVICE LENGTH EXCEEDS 30 m, THE DIAMETER SHALL BE 25 mm

8. ALL CURB AND VALVE BOXES TO BE LOCATED AT STREET LINE.

9. MECHANICAL THRUST RESTRAINTS SHALL BE INSTALLED AT ALL FITTINGS, BENDS, TEES, CROSSES, REDUCERS AND VALVES FOR ALL WATERMAIN SIZES. MECHANICAL RESTRAINTS AT JOINTS SHALL BE INSTALLED AT EVERY PIPE JOINT 6.1 m OF EITHER SIDE OF THE VALVE FOR WATERMAINS 100 mm DIAMETER OR LARGER.

10. ALL TEES, PLUGS, HORIZONTAL, VERTICAL BENDS, REDUCERS AND HYDRANTS TO HAVE CONCRETE THRUST BLOCKS ACCORDING TO T-1103.01 AND T-1103.020.

11. WATERMAINS MUST FOLLOW THE ONTARIO MINISTRY OF THE ENVIRONMENT PROCEDURE F-6-1 THAT GOVERN THE SEPARATION OF SEWERS AND WATERMAINS. A MINIMUM VERTICAL CLEARANCE OF 0.30 m WHEN CROSSING OVER AND 0.5 m WHEN CROSSING UNDER SEWER AND ALL OTHER UTILITIES IS REQUIRED. MUST ALSO MAINTAIN 2.5 m HORIZONTAL SEPARATIONS WITH SEWERS.

12. ALL VALVES LESS THAN 400 mm WILL BE IN A VALVE AND BOX ACCORDING TO T-1101.02-2. ALL VALVES 400 mm AND LARGER SHALL BE IN A CHAMBER.

13. SACRIFICIAL ANODES SHALL BE INSTALLED ON ALL METALLIC PIPES AND APPURTENANCES, WATER SERVICES AND FITTINGS ACCORDING TO T-1106.04, T-1106.05, T-1106.06 AND TS 7.22.

14. TRACER WIRE INSTALLATION SHALL BE ACCORDING TO TS 7.40.

15. HYDROSTATIC PRESSURE TEST AND LEAKAGE TESTING OF THE WATERMAIN SHALL BE ACCORDING TO TS 441.

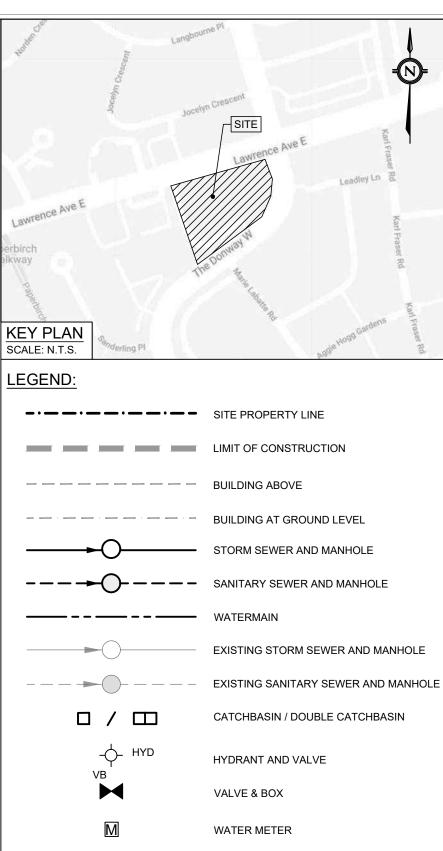
16. THE NEW WATERMAIN SHALL BE ISOLATED ACCORDING TO T-1104.03-4 UNTIL BACTERIOLOGICAL TESTS ARE SATISFACTORILY COMPLETED.

17. PROVISIONS FOR FLUSHING THE WATER MAIN PRIOR TO TESTING AND SO FORTH MUST BE PROVIDED WITH AT LEAST A 50 mm OUTLET ON 100 mm AND LARGER LINES ACCORDING TO T-1104.03-1. COPPER WATER SERVICES SHALL HAVE FLUSHING POINTS AT THE END, THE SAME SIZE AS THE LINE. ON FIRE LINES, FLUSHING OUTLET TO BE 50 mm DIAMETER MINIMUM OR A HYDRANT.

18. DISINFECTION OF THE WATERMAIN SHALL BE ACCORDING TO TS 7.30 AND SHALL INCLUDE ALL NEW WATER SERVICES 100 mm DIA AND LARGER.

19. TORONTO WATER REQUIRES THAT THE NEW DISTRIBUTION SYSTEM REMAIN ISOLATED UNTIL SATISFACTORY BACTERIOLOGICAL SAMPLE RESULTS ARE RECEIVED. ECS CONTRACT ADMINISTRATOR SHALL NOTIFY TORONTO WATER WHEN SAMPLE RESULTS HAVE PASSED IN ORDER TO PROCEED WITH REMOVAL OF THE BLOW-OFF AND BACK FILLING OF THE ACCESS PIT.

20. AFTER SATISFACTORY DISINFECTION OF THE NEW WATERMAIN IS ACHIEVED, PERMANENT CONNECTIONS TO THE EXISTING WATERMAIN(S) WITH A FILTER PIECE SHALL BE MADE ACCORDING TO TS 7.70.


21. CITY IN-SERVICE WATER VALVES, CURB STOPS, FIRE HYDRANTS CAN ONLY BE OPERATED BY TORONTO WATER STAFF

22. ALL NEW WATERMAINS SHALL BE INSULATED WHERE THE COVER IS LESS THAN 1.65 m ACCORDING TO T-708.01-4.

23. THE OWNER IS REQUIRED TO INSTALL AND MAINTAIN A PREMISE ISOLATION DEVICE FOR ALL APPLICABLE WATER SERVICES IN ACCORDANCE WITH TORONTO MUNICIPAL CODE, CHAPTER 851 WATER SUPPLY, THE BUILDING CODE, AND CSA B64 SERIES STANDARDS.

24. THE LOCATION OF THE WATER METER SHALL BE TO TORONTO WATER'S SATISFACTION.

BE ADVISED THAT SHOULD ANY PARTY, INCLUDING THE APPLICANT OR ANY SUBSEQUENT OWNER, APPLY FOR MORE THAN ONE CONDOMINIUM CORPORATION ENCOMPASSING ANY OR ALL OF THIS DEVELOPMENT OR MAKE AN APPLICATION THAT RESULTS IN A LAND DIVISION. STAFF MAY REQUIRE LEGAL ASSURANCES, INCLUDING BUT NOT LIMITED TO EASEMENTS, WITH RESPECT TO THE APPROVED SERVICES. SUCH ASSURANCES WILL BE DETERMINED AT THE TIME OF APPLICATION FOR

BACKFLOW PREVENTOR

DETECTOR ASSEMBLY

SIAMESE CONNECTION

SITE PLAN

PREPARED BY: WZMH ARCHITECTS

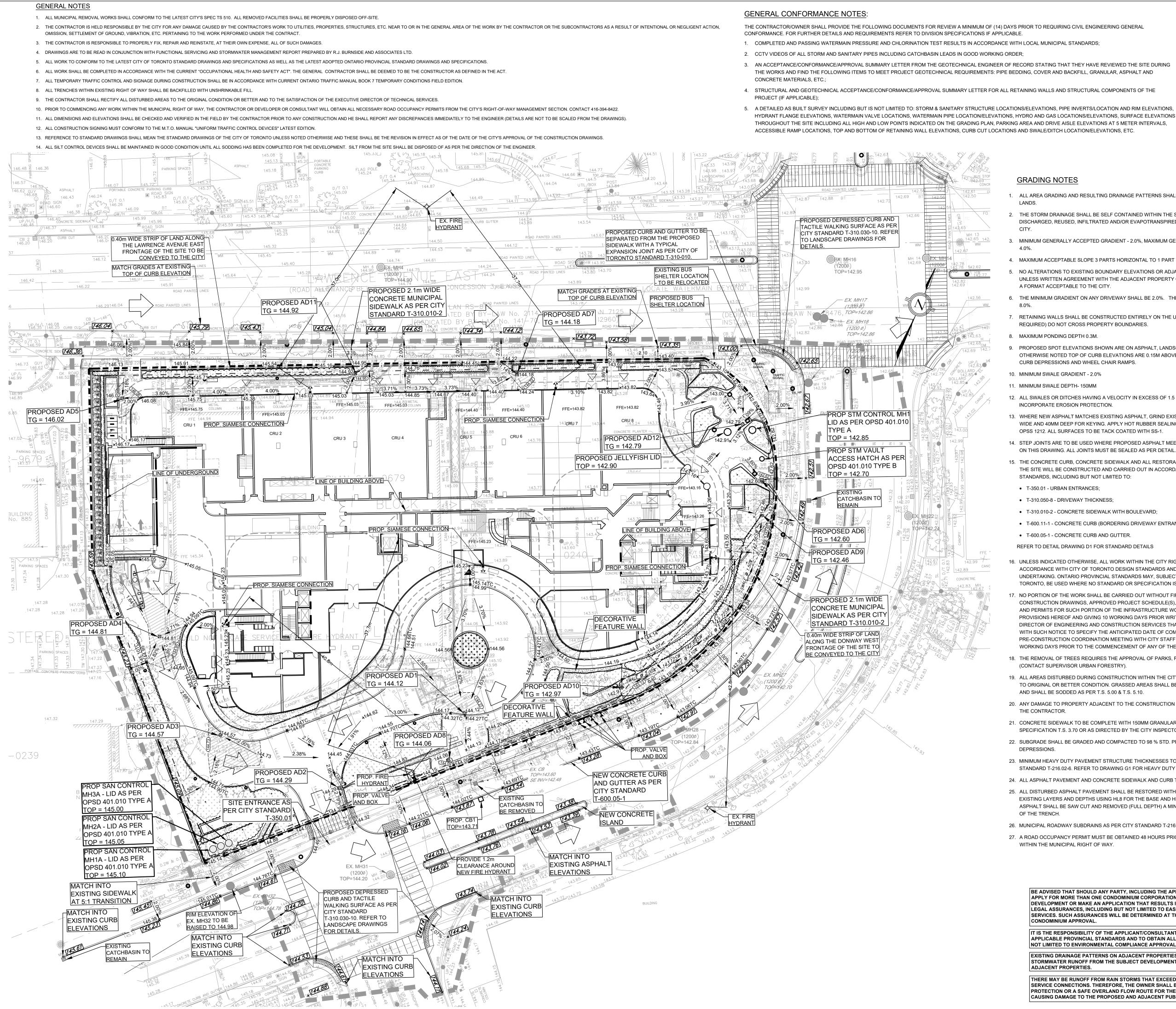
 \sim

DATE: MAY 12, 2023 **TOPOGRAPHIC & LEGAL**

PREPARED BY: SCHAEFFER DZALDOV BENNETT LTD.

DATE: JUNE 26, 2013 BENCHMARK NOTES

LEVATIONS SHOWN HEREON ARE GEODETIC AND ARE REFERRED TO CITY OF TORONTO BENCHMARK No. NY9046 HAVING A PUBLISHED ELEVATION OF 143.162 METRES.


- This drawing is the exclusive property of R. J. Burnside & Associates Limited. The reproduction of
- any part without prior written consent of this office is strictly prohibited. The contractor shall verify all dimensions, levels, and datums on site and report any discrepancies
- or omissions to this office prior to construction.

3. This drawing is to be read and understood in conjunction with all other plans and documents

á	applicable to this project.		
No.	Issue / Revision	Date	Auth.
0	ISSUED FOR ZBA	7/15/2022	LG
1	RE-ISSUED FOR ZBA	2/7/2023	LG
2	RE-ISSUED FOR ZBA	4/5/2023	LG
3	2nd ZBA SUBMISSION	6/30/2023	LG
	L. J. GARNER 100171979 JUNE 30, 2023		
	BURNSIDE	R.J. Burnside & Associat 1465 Pickering Parkway Pickering, Ontario, L1V 7G7 Telephone: (905) 420-5777 Fax: (905) 420-5247 web www.rjburnside.com	es Limited
85 H	HT HOLDINGS (ONTARIO) C IANNA AVENUE, SUITE 400 RONTO, ONTARIO	FIRST	
M6K Projec 89	³ 333 ³ ^{x Name} 5 LAWRENCE AVENUE EAS ⁻ 9RTH YORK, ON M3C 3L2	CAPITAL Creating thrying urhan neighboorhoids	
	ng Title		

SERVICING PLAN

Drawn CL	Checked GP	Designed LG	Checked JM	Date 20/12/23	Drawing No.
<u> </u>	0.		0111	20/12/20	
Project No. 300051428.0000		Contract No.		Revision No.	S1
Scale 1:300	0	6.0	12.0	18.0m	_

Plotted by:JMcGihon Paper size: ARCH D (24.00 X 36.00 Inches) Plot table: Rjb Full Scale-pickering 2013.ctb

GRADING NOTES

1. ALL AREA GRADING AND RESULTING DRAINAGE PATTERNS SHALL NOT ADVERSELY AFFECT ADJACENT

THE STORM DRAINAGE SHALL BE SELF CONTAINED WITHIN THE SUBJECT PROPERTY UNTIL IT CAN BE DISCHARGED, REUSED, INFILTRATED AND/OR EVAPOTRANSPIRED IN A MANNER ACCEPTABLE TO THE

3. MINIMUM GENERALLY ACCEPTED GRADIENT - 2.0%, MAXIMUM GENERALLY ACCEPTABLE GRADIENT -

4. MAXIMUM ACCEPTABLE SLOPE 3 PARTS HORIZONTAL TO 1 PART VERTICAL

NO ALTERATIONS TO EXISTING BOUNDARY ELEVATIONS OR ADJACENT LANDS SHALL BE UNDERTAKEN UNLESS WRITTEN AGREEMENT WITH THE ADJACENT PROPERTY OWNER IS OBTAINED AND SUBMITTED IN A FORMAT ACCEPTABLE TO THE CITY.

6. THE MINIMUM GRADIENT ON ANY DRIVEWAY SHALL BE 2.0%. THE MAXIMUM DRIVEWAY GRADIENT IS

7. RETAINING WALLS SHALL BE CONSTRUCTED ENTIRELY ON THE UPPER PROPERTY SO THAT TIE BACKS (IF REQUIRED) DO NOT CROSS PROPERTY BOUNDARIES.

8. MAXIMUM PONDING DEPTH 0.3M.

PROPOSED SPOT ELEVATIONS SHOWN ARE ON ASPHALT, LANDSCAPE OR CONCRETE AREAS. UNLESS OTHERWISE NOTED TOP OF CURB ELEVATIONS ARE 0.15M ABOVE ASPHALT ELEVATIONS EXCEPT AT CURB DEPRESSIONS AND WHEEL CHAIR RAMPS.

10. MINIMUM SWALE GRADIENT - 2.0%

11. MINIMUM SWALE DEPTH- 150MM

12. ALL SWALES OR DITCHES HAVING A VELOCITY IN EXCESS OF 1.5 M/S SHALL BE DESIGNED TO INCORPORATE EROSION PROTECTION.

13. WHERE NEW ASPHALT MATCHES EXISTING ASPHALT, GRIND EXISTING ASPHALT A MINIMUM OF 300MM WIDE AND 40MM DEEP FOR KEYING. APPLY HOT RUBBER SEALING COMPOUND IN ACCORDANCE WITH OPSS 1212. ALL SURFACES TO BE TACK COATED WITH SS-1.

14. STEP JOINTS ARE TO BE USED WHERE PROPOSED ASPHALT MEETS EXISTING ASPHALT AS PER DETAIL ON THIS DRAWING. ALL JOINTS MUST BE SEALED AS PER DETAIL.

15. THE CONCRETE CURB, CONCRETE SIDEWALK AND ALL RESTORATION ALONG FRONTING ROADWAYS TO THE SITE WILL BE CONSTRUCTED AND CARRIED OUT IN ACCORDANCE WITH CITY OF TORONTO STANDARDS, INCLUDING BUT NOT LIMITED TO:

T-350.01 - URBAN ENTRANCES;

• T-310.050-8 - DRIVEWAY THICKNESS;

• T-310.010-2 - CONCRETE SIDEWALK WITH BOULEVARD;

• T-600.11-1 - CONCRETE CURB (BORDERING DRIVEWAY ENTRANCE)

• T-600.05-1 - CONCRETE CURB AND GUTTER.

REFER TO DETAIL DRAWING D1 FOR STANDARD DETAILS

16. UNLESS INDICATED OTHERWISE, ALL WORK WITHIN THE CITY RIGHT-OF-WAY SHALL BE UNDERTAKEN IN ACCORDANCE WITH CITY OF TORONTO DESIGN STANDARDS AND SPECIFICATION AND THE UNDERTAKING. ONTARIO PROVINCIAL STANDARDS MAY, SUBJECT TO THE APPROVAL OF THE CITY OF TORONTO, BE USED WHERE NO STANDARD OR SPECIFICATION IS NOTED.

. NO PORTION OF THE WORK SHALL BE CARRIED OUT WITHOUT FIRST HAVING OBTAINED APPROVED CONSTRUCTION DRAWINGS, APPROVED PROJECT SCHEDULE(S), APPROVED TRAFFIC STAGING PLANS AND PERMITS FOR SUCH PORTION OF THE INFRASTRUCTURE WORK IN ACCORDANCE WITH THE PROVISIONS HEREOF AND GIVING 10 WORKING DAYS PRIOR WRITTEN NOTICE TO THE EXECUTIVE DIRECTOR OF ENGINEERING AND CONSTRUCTION SERVICES THAT SUCH WORK IS TO BE CARRIED OUT WITH SUCH NOTICE TO SPECIFY THE ANTICIPATED DATE OF COMMENCEMENT OF THE WORK. A PRE-CONSTRUCTION COORDINATION MEETING WITH CITY STAFF IS TO BE HELD A MINIMUM OF 5 WORKING DAYS PRIOR TO THE COMMENCEMENT OF ANY OF THE WORK.

18. THE REMOVAL OF TREES REQUIRES THE APPROVAL OF PARKS, FORESTRY & RECREATION DIVISION (CONTACT SUPERVISOR URBAN FORESTRY).

19. ALL AREAS DISTURBED DURING CONSTRUCTION WITHIN THE CITY'S RIGHT-OF-WAY SHALL BE RESTORED TO ORIGINAL OR BETTER CONDITION. GRASSED AREAS SHALL BE PROVIDED WITH 100MM OF TOPSOIL AND SHALL BE SODDED AS PER T.S. 5.00 & T.S. 5.10.

20. ANY DAMAGE TO PROPERTY ADJACENT TO THE CONSTRUCTION SITE SHALL BE THE RESPONSIBILITY OF

21. CONCRETE SIDEWALK TO BE COMPLETE WITH 150MM GRANULAR BASE AS OUTLINE IN CITY OF TORONTO SPECIFICATION T.S. 3.70 OR AS DIRECTED BY THE CITY INSPECTOR.

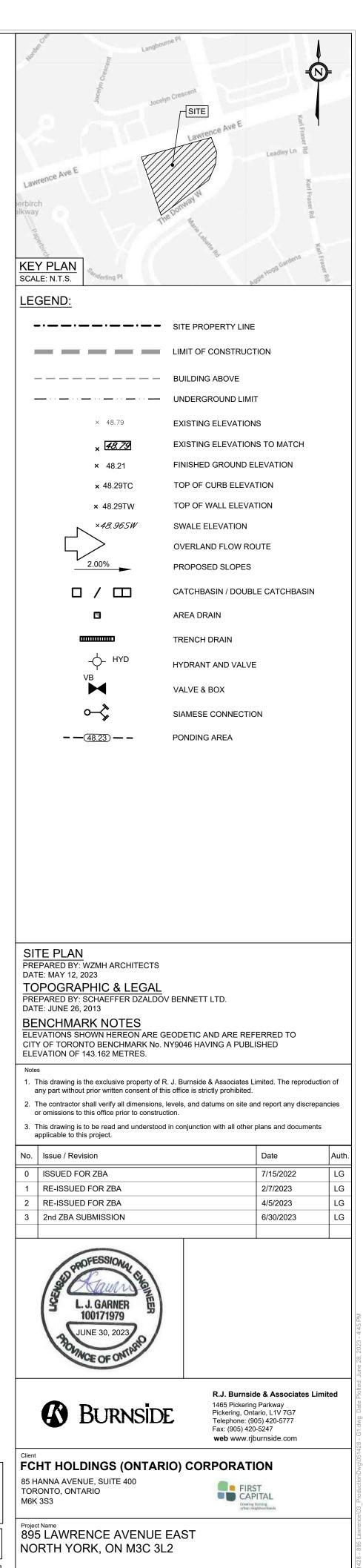
22. SUBGRADE SHALL BE GRADED AND COMPACTED TO 98 % STD. PROCTOR DENSITY FREE OF

23. MINIMUM HEAVY DUTY PAVEMENT STRUCTURE THICKNESSES TO BE AS PER CITY OF TORONTO STANDARD T-216.02-6. REFER TO DRAWING G1 FOR HEAVY DUTY ASPHALT PAVEMENT AREAS.

24. ALL ASPHALT PAVEMENT AND CONCRETE SIDEWALK AND CURB TO BE SAW CUT PRIOR TO REMOVAL. 25. ALL DISTURBED ASPHALT PAVEMENT SHALL BE RESTORED WITH HOT LAID ASPHALT MATCHING THE

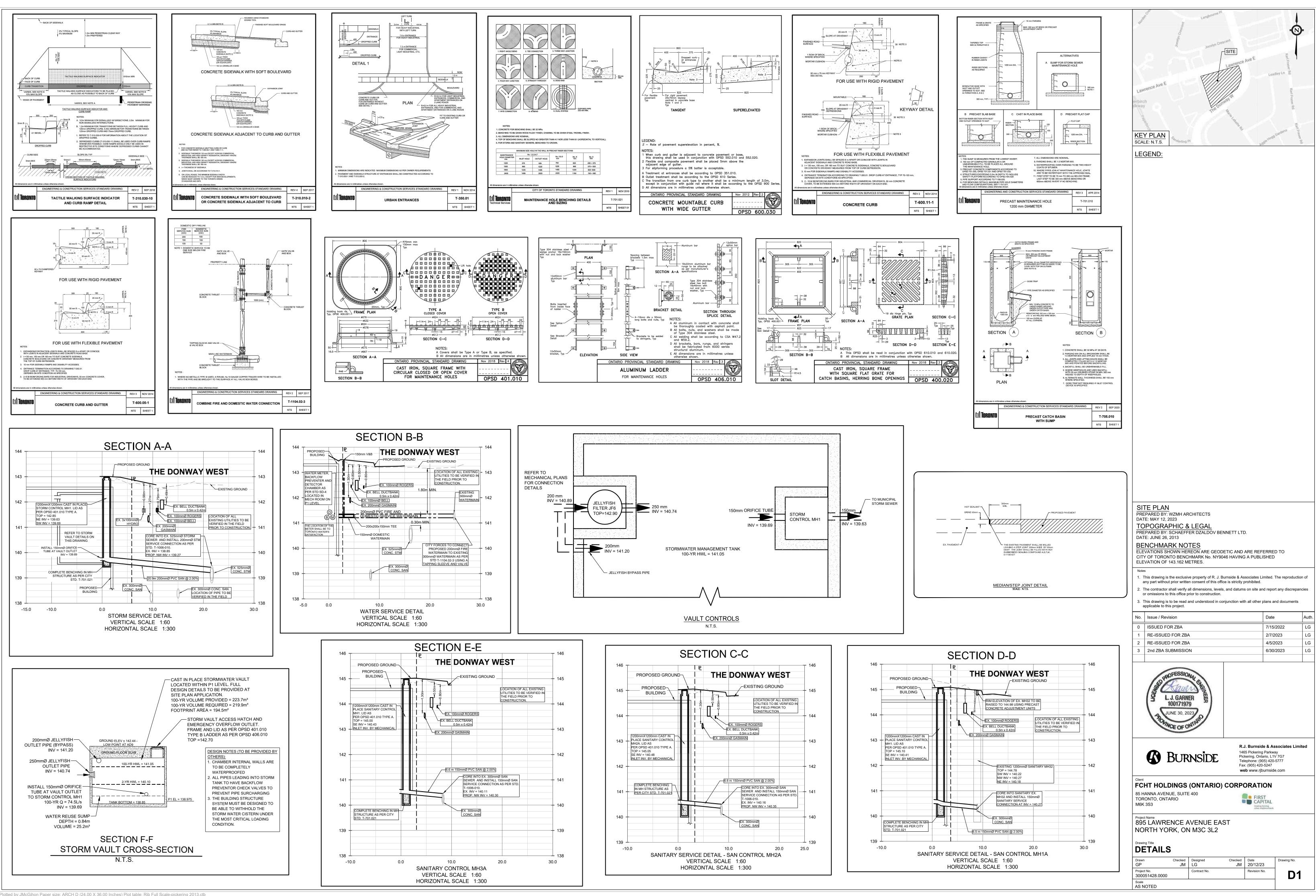
EXISTING LAYERS AND DEPTHS USING HL8 FOR THE BASE AND HL3 FOR THE TOP LIFT. THE EXISTING ASPHALT SHALL BE SAW CUT AND REMOVED (FULL DEPTH) A MIN. DISTANCE OF 300mm FROM THE FACE

26. MUNICIPAL ROADWAY SUBDRAINS AS PER CITY STANDARD T-216.02-8.

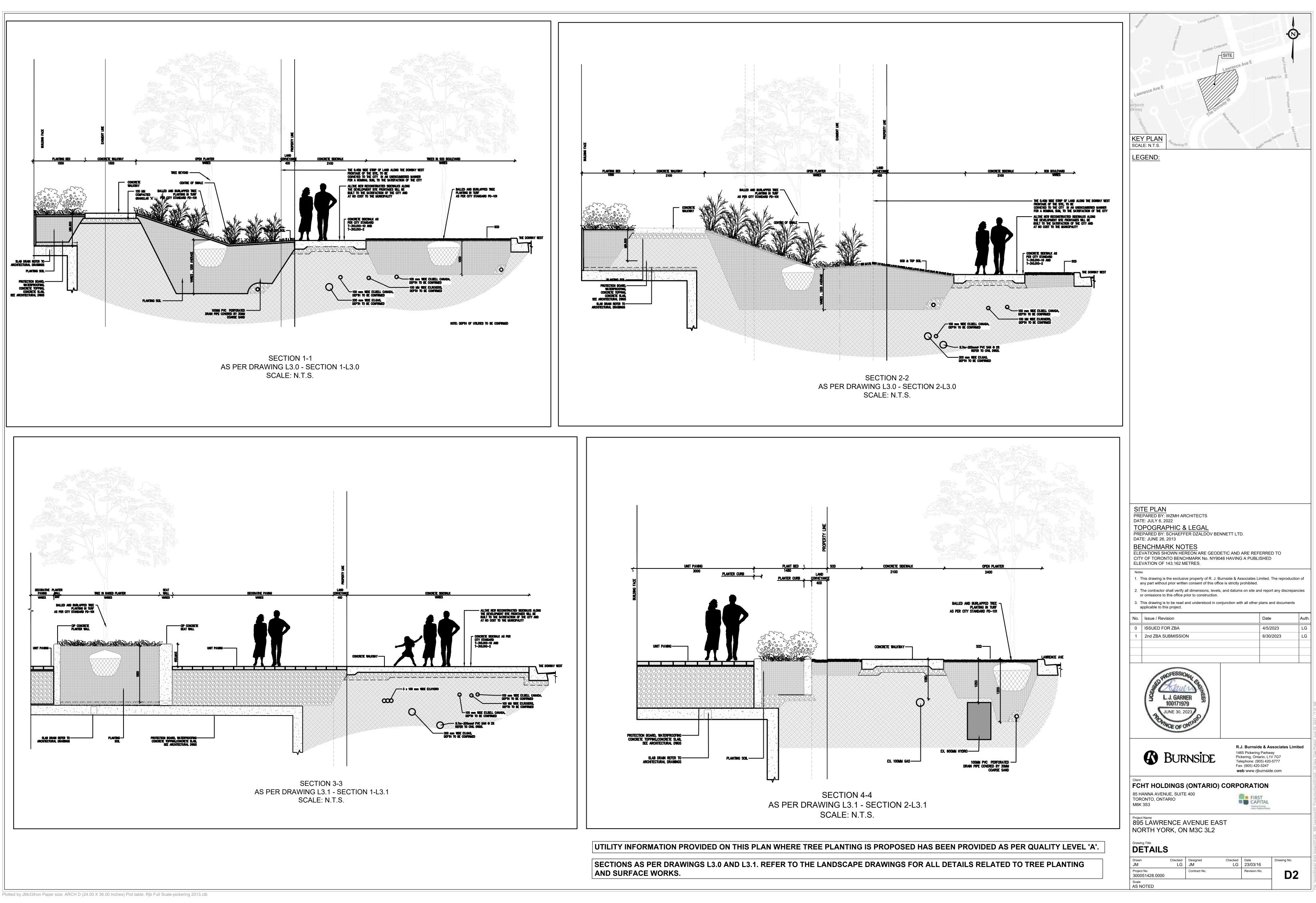

27. A ROAD OCCUPANCY PERMIT MUST BE OBTAINED 48 HOURS PRIOR TO COMMENCING ANY WORKS WITHIN THE MUNICIPAL RIGHT OF WAY.

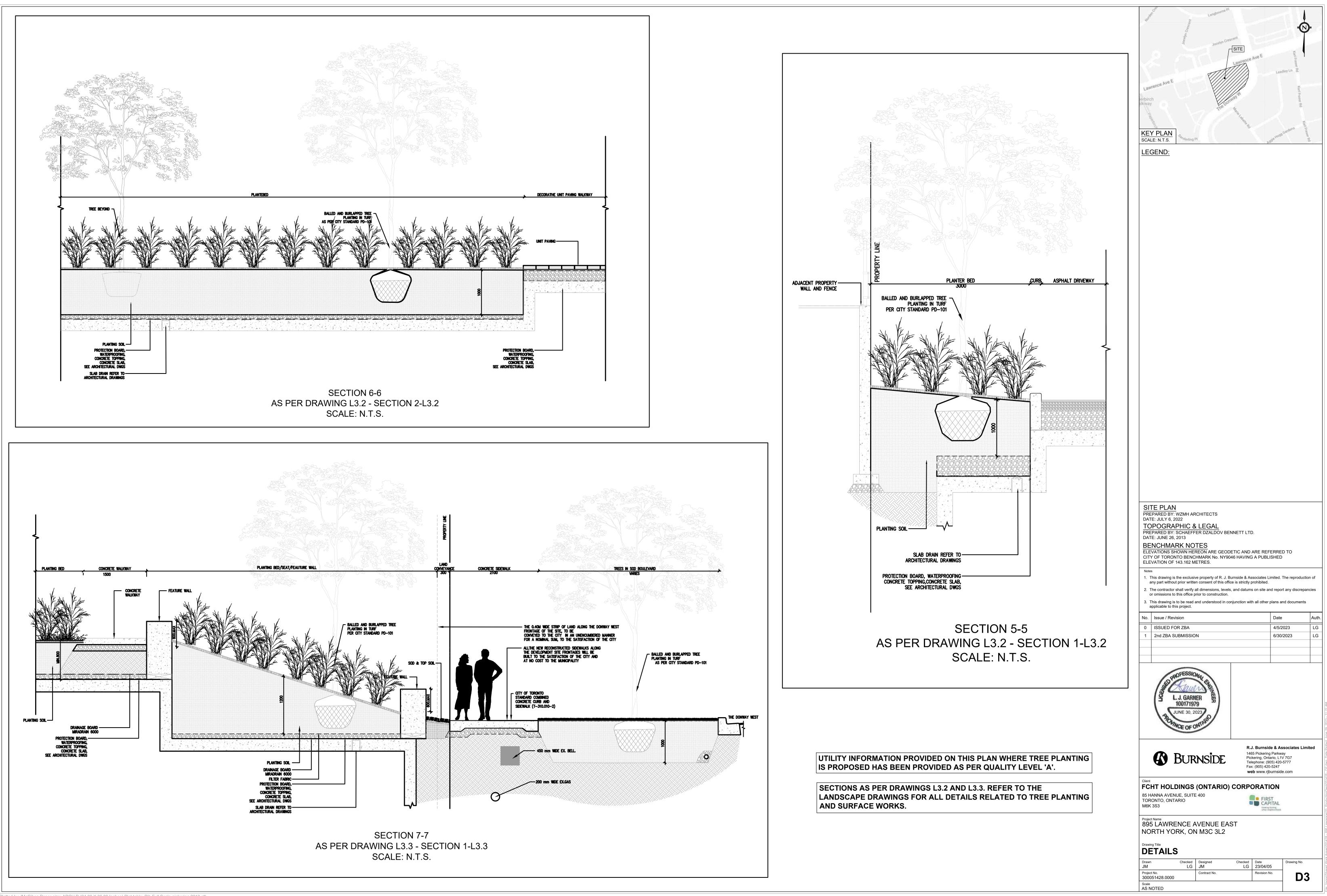
BE ADVISED THAT SHOULD ANY PARTY, INCLUDING THE APPLICANT OR ANY SUBSEQUENT OWNER, APPLY FOR MORE THAN ONE CONDOMINIUM CORPORATION ENCOMPASSING ANY OR ALL OF THIS DEVELOPMENT OR MAKE AN APPLICATION THAT RESULTS IN A LAND DIVISION, STAFF MAY REQUIRE LEGAL ASSURANCES, INCLUDING BUT NOT LIMITED TO EASEMENTS, WITH RESPECT TO THE APPROVED SERVICES. SUCH ASSURANCES WILL BE DETERMINED AT THE TIME OF APPLICATION FOR CONDOMINIUM APPROVAL

IT IS THE RESPONSIBILITY OF THE APPLICANT/CONSULTANT TO ENSURE COMPLIANCE WITH ALL APPLICABLE PROVINCIAL STANDARDS AND TO OBTAIN ALL PROVINCIAL APPROVALS, INCLUDING BUT NOT LIMITED TO ENVIRONMENTAL COMPLIANCE APPROVALS.

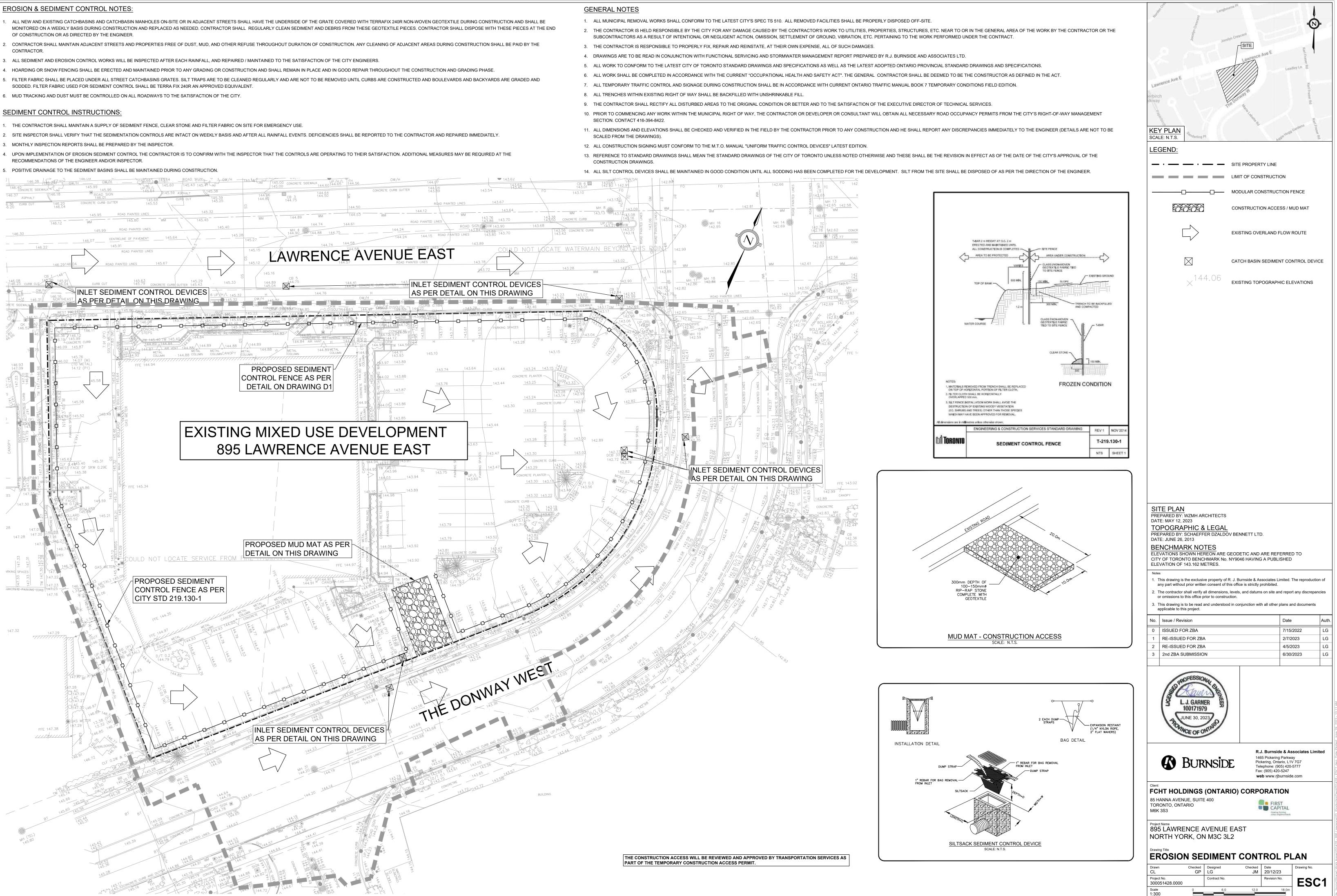

EXISTING DRAINAGE PATTERNS ON ADJACENT PROPERTIES SHALL NOT BE ALTERED AND STORMWATER RUNOFF FROM THE SUBJECT DEVELOPMENT SHALL NOT BE DIRECTED TO DRAIN ONTO ADJACENT PROPERTIES.

THERE MAY BE RUNOFF FROM RAIN STORMS THAT EXCEEDS THE CAPACITY OF THE CITY'S STORM SERVICE CONNECTIONS. THEREFORE, THE OWNER SHALL BE RESPONSIBLE TO PROVIDE FLOOD PROTECTION OR A SAFE OVERLAND FLOW ROUTE FOR THE PROPOSED DEVELOPMENT WITHOUT CAUSING DAMAGE TO THE PROPOSED AND ADJACENT PUBLIC AND PRIVATE PROPERTIES.

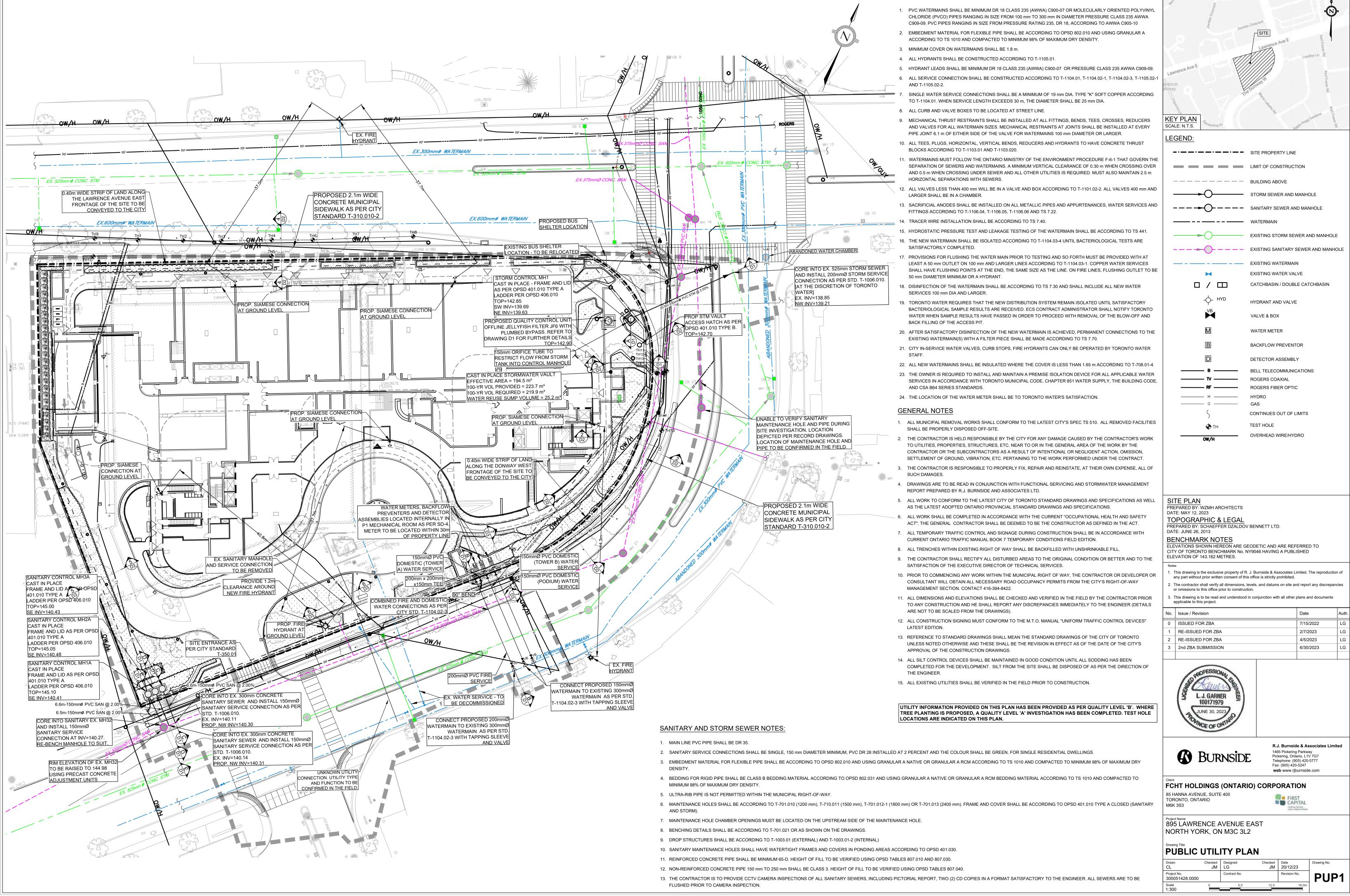



GRADING PLAN

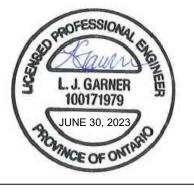
Drawn CL	Checked GP	Designed JM	Checked LG	Date 20/12/23	Drawing No.
Project No. 300051428.0000		Contract No.		Revision No.	G1
Scale 1:300	0	6.0	12.0	18.0m	



Plotted by: JMcGihon Paper size: ARCH D (24.00 X 36.00 Inches) Plot table: Rjb Full Scale-pickering 2013.ctb



- CONTRACTOR.



Plotted by: JMcGihon Paper size: ARCH D (24.00 X 36.00 Inches) Plot table: Rjb Full Scale-pickering 2013.ctb

No.	Issue / Revision	Date	Auth.
0	ISSUED FOR ZBA	7/15/2022	LG
1	RE-ISSUED FOR ZBA	2/7/2023	LG
2	RE-ISSUED FOR ZBA	4/5/2023	LG
3	2nd ZBA SUBMISSION	6/30/2023	LG

R.J. Burnside & Associates Limited